19.實數(shù)m為何值時,關(guān)于x的方程7x2-(m+13)x+m2-m-2=0的兩個實根x1,x2滿足0<x1<x2<2.

分析 構(gòu)造函數(shù),根據(jù)兩個實根x1,x2滿足0<x1<x2<2,建立不等關(guān)系,即可得出結(jié)論.

解答 解:設(shè)f(x)=7x2-(m+13)x+m2-m-2,則f(x)=0的根滿足0<x1<x2<2.
∴$\left\{\begin{array}{l}{△=(m+13)^{2}-28({m}^{2}-m-2)>0}\\{0<\frac{m+13}{14}<2}\\{{m}^{2}-m-2>0}\\{28-2(m+13)+{m}^{2}-m-2>0}\end{array}\right.$,
∴1-$\frac{2\sqrt{21}}{3}$<m<-1或2<m<1+$\frac{2\sqrt{21}}{3}$.

點評 本題主要考查一元二次方程根的分布與系數(shù)的關(guān)系,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.用“五點法”畫出函數(shù)y=3sinx,x∈[0,2π]的簡圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.寫出下列條件的橢圓的標準方程:
(1)焦點在x軸上,焦距等于4,并經(jīng)過點P(3,-2$\sqrt{6}$);
(2)焦點坐標分別為(0,-4),(0,4),a=5;
(3)a+c=10,a-c=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.化簡tan$\root{α}{\frac{1}{si{n}^{2}α}-1}$,其中α是第二象限角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知直角△ABC的兩直角邊AB、AC的邊長分別為方程x2-2(1+$\sqrt{3}$)x+4$\sqrt{3}$=0的兩根,且AB<AC,斜邊BC上有異于端點B、C的兩點E、F,且EF=1,設(shè)∠EAF=θ,則tanθ的取值范圍為($\frac{\sqrt{3}}{9}$,$\frac{4\sqrt{3}}{11}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知方程x2-mx+4=0在-1≤x≤1上有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若方程$\frac{{x}^{2}}{m-1}$+$\frac{{y}^{2}}{{m}^{2}-4}$=3表示焦點在y軸上的雙曲線,則m的取值范圍是(  )
A.1<m<2B.m>2C.m<-2D.-2<m<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知0(0,0),A(3,0),B(0,4),P是△OAB的內(nèi)切圓上一動點,則以PO、PA、PB為半徑的三個圓面積之和的最大值為( 。
A.10πB.12πC.22πD.25π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)f(x)滿足下列性質(zhì):
(1)定義域為R,值域為[1,+∞);   
(2)圖象關(guān)于x=2對稱   
(3)函數(shù)在(-∞,0)上是減函數(shù)
請寫出函數(shù)f(x)的一個解析式(x-2)2+1(只要寫出一個即可)

查看答案和解析>>

同步練習(xí)冊答案