【題目】已知函數(shù),下列命題:
①的定義域為;
②是奇函數(shù);
③在上單調遞增;
④若實數(shù)滿足,則;
⑤設函數(shù)在上的最大值為,最小值為,則.
其中真命題的序號是______.(寫出所有真命題的序號)
【答案】①②③④.
【解析】
由對數(shù)的真數(shù)大于0,解不等式可判斷①;由奇函數(shù)的定義,可判斷②;由復合函數(shù)的單調性可判斷③;由函數(shù)的奇偶性和單調性,解方程可判斷④;由奇函數(shù)的性質:在對稱區(qū)間上的最值之和為0,可判斷⑤.
對于①,函數(shù),由,得,當時,成立,當時,兩邊平方得成立.所以的定義域為,故①正確;
對于②,,所以是奇函數(shù),故②正確;
對于③,令,設,
,
所以,所以在上單調遞增,又在上單調遞增,所以在上單調遞增,又因為是奇函數(shù),所以在上單調遞增,故③正確;
對于④,若實數(shù)滿足,則有所以,即有,故④正確;
對于⑤,為奇函數(shù),,,∴,∴,故⑤不正確.
故答案為:①②③④.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左頂點為,焦距為2.
(1)求橢圓的標準方程;
(2)過點的直線與橢圓的另一個交點為點,與圓的另一個交點為點,是否存在直線使得?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“總把新桃換舊符”(王安石)、“燈前小草寫桃符”(陸游),春節(jié)是中華民族的傳統(tǒng)節(jié)日.在宋代人們用寫“桃符”的方式來祈福避禍,而現(xiàn)代人們通過貼“!弊、春聯(lián)等方式來表達對新年的美好祝愿.某商家在春節(jié)前開展商品促銷活動,顧客凡購物金額滿50元,則可以任意免費領取一張“福”字或一副春聯(lián)。莖葉圖的統(tǒng)計數(shù)據(jù)是在不同時段內領取“!弊趾痛郝(lián)的人數(shù),則它們的中位數(shù)依次為( )
A.25,27B.26,25C.26,27D.27,25
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=x2+acosx+bx,非空數(shù)集A={x|f(x)=0},B={x|f(f(x))=0},已知A=B,則參數(shù)a的所有取值構成的集合為_____;參數(shù)b的所有取值構成的集合為_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了了解居民的用電情況,某地供電局抽查了該市若干戶居民月均用電量(單位:),并將樣本數(shù)據(jù)分組為,,,,,, ,其頻率分布直方圖如圖所示.
(1)若樣本中月均用電量在的居民有戶,求樣本容量;
(2)求月均用電量的中位數(shù);
(3)在月均用電量為,,,的四組居民中,用分層隨機抽樣法抽取戶居民,則月均用電量在的居民應抽取多少戶?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,四棱錐P﹣ABCD的底面是邊長為2的正方形,平面PAD⊥平面ABCD,PA⊥AD,∠PDA=45°,E,F分別為AB,PC的中點.
(1)證明:EF∥平面PAD;
(2)在線段BC上是否存在一點H,使平面PAH⊥平面DEF?若存在,求此時二面角C﹣HD﹣P的平面角的正切值:若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,為橢圓的左右焦點,在以為圓心,1為半徑的圓上,且.
(1)求橢圓的方程;
(2)過點的直線交橢圓于,兩點,過與垂直的直線交圓于,兩點,為線段的中點,求的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(I)求函數(shù)f(x)的單調區(qū)間;
(Ⅱ)若不等式對任意的都成立(其中e是自然對數(shù)的底數(shù)),求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com