13.如圖,在五面體ABCDEF中,面CDE和面ABF都為等邊三角形,面ABCD是等腰梯形,點P、Q分別是CD、AB的中點,F(xiàn)Q∥EP,PF=PQ,AB=2CD=2.
(1)求證:平面ABF⊥平面PQFE;
(2)若PQ與平面ABF所成的角為$\frac{π}{3}$,求三棱錐P-QDE的體積.

分析 (1)由ABF為正三角形,且Q為AB的中點,可得FQ⊥AB,再由已知得PQ⊥AB,利用線面垂直的判定可得AB⊥平面PEFQ,再由面面垂直的判定可得平面ABF⊥平面PQFE;
(2)取FQ中點O,連接PO,可得∠PQO為PQ與平面ABF所成的角為$\frac{π}{3}$,求出OP=$\frac{3}{2}$.得到三角形QPE的面積,然后利用等積法求得三棱錐P-QDE的體積.

解答 (1)證明:如圖,
∵ABF為正三角形,且Q為AB的中點,∴FQ⊥AB,
在等腰梯形ABCD中,∵P、Q分別是CD、AB的中點,
∴PQ⊥AB,又FQ∩PQ=Q,∴AB⊥平面PEFQ,
又AB?面ABF,∴平面ABF⊥平面PQFE;
(2)解:取FQ中點O,連接PO,∵PQ=PF,∴PO⊥QF,
又平面ABF⊥平面PQFE,且平面ABF∩平面PQFE=QF,
∴PO⊥平面ABF,則∠PQO為PQ與平面ABF所成的角為$\frac{π}{3}$,
∵等邊三角形ABF的邊長為2,∴QF=$\sqrt{3}$,則OQ=$\frac{\sqrt{3}}{2}$,則OP=$\frac{3}{2}$.
∴${S}_{△QPE}=\frac{1}{2}×1×\frac{3}{2}=\frac{3}{4}$,
則${V}_{P-QDE}={V}_{D-PQE}=\frac{1}{3}×\frac{3}{4}×\frac{1}{2}=\frac{1}{8}$.

點評 本題考查平面與平面垂直的判定,考查空間想象能力和思維能力,訓練了利用等積法求多面體的體積,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

3.已知雙曲線方程為$\frac{{x}^{2}}{{m}^{2}+4}$-$\frac{{y}^{2}}{^{2}}$=1,若其過焦點的最短弦長為2,則該雙曲線的離心率的取值范圍是(1,$\frac{\sqrt{6}}{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.如圖同心圓中,大、小圓的半徑分別為2和1,點P在大圓上,PA與小圓相切于點A,Q為小圓上的點,則$\overrightarrow{PA}•\overrightarrow{PQ}$的取值范圍是[3-$\sqrt{3}$,3+$\sqrt{3}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知等比數(shù)列{an}首項為2,前2m項滿足a1+a3+…+a2m-1=170,a2+a4+…+a2m=340,則正整數(shù)m=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.函數(shù)f(x)=$\frac{x}{{e}^{|x|}}$的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若一個三位數(shù)的十位數(shù)字比個位數(shù)字和百位數(shù)字都大,則稱這個數(shù)為“傘數(shù)”,現(xiàn)從0,1,2,3,4,5,6,7,這個數(shù)字中任取3個,組成無重復數(shù)字的三位數(shù),其中“傘數(shù)”有91個(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知二次函數(shù)f(x)=ax2-2x+c的值域為[0,+∞),則$\frac{9}{a}+\frac{1}{c}$的最小值為6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知隨機變量ξ服從正態(tài)分布N(μ,σ2),若P(ξ<2)=P(ξ>6)=0.15,則P(2≤ξ<4)等于(  )
A.0.3B.0.35C.0.5D.0.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.鷹潭市龍虎山花語世界位于中國第八處世界自然遺產(chǎn),世界地質(zhì)公元、國家自然文化雙遺產(chǎn)地、國家AAAAA級旅游景區(qū)--龍虎山主景區(qū)排衙峰下,是一座獨具現(xiàn)代園藝風格的花卉公園,園內(nèi)匯集了3000余種花卉苗木,一年四季姹紫嫣紅花香四溢.花園景觀融合法、英、意、美、日、中六大經(jīng)典園林風格,景觀設(shè)計唯美新穎.玫瑰花園、香草花溪、臺地花海、植物迷宮、兒童樂園等景點錯落有致,交相呼應(yīng)又自成一體,是世界園藝景觀的大展示.該景區(qū)自2015年春建成試運行以來,每天游人如織,郁金香、向日葵、虞美人等賞花旺季日入園人數(shù)最高達萬人.
某學校社團為了解進園旅客的具體情形以及采集旅客對園區(qū)的建議,特別在2017年4月1日賞花旺季對進園游客進行取樣調(diào)查,從當日12000名游客中抽取100人進行統(tǒng)計分析,結(jié)果如下:(表一)
年齡頻數(shù)頻率
[0,10)100.155
[10,20)
[20,30)250.251213
[30,40)200.21010
[40,50)100.164
[50,60)100.137
[60,70)50.0514
[70,80)30.0312
[80,90)20.0202
合計1001.004555
(1)完成表格一中的空位①-④,并在答題卡中補全頻率分布直方圖,并估計2017年4月1日當日接待游客中30歲以下人數(shù).
(2)完成表格二,并問你能否有97.5%的把握認為在觀花游客中“年齡達到50歲以上”與“性別”相關(guān)?
(3)按分層抽樣(分50歲以上與50以下兩層)抽取被調(diào)查的100位游客中的10人作為幸運游客免費領(lǐng)取龍虎山內(nèi)部景區(qū)門票,再從這10人中選取2人接受電視臺采訪,設(shè)這2人中年齡在50歲以上(含)的人數(shù)為ξ,求ξ的分布列
(表二)
50歲以上50歲以下合計
男生54045
女生154055
合計2080100
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

同步練習冊答案