20.已知A+B=π,B∈($\frac{π}{2}$,π),且sinB=$\frac{1}{3}$,則tanA=( 。
A.$\frac{1}{3}$B.$\frac{{2\sqrt{2}}}{3}$C.2$\sqrt{2}$D.$\frac{{\sqrt{2}}}{4}$

分析 由已知利用同角三角函數(shù)基本關(guān)系式可求cosB,利用誘導(dǎo)公式,同角三角函數(shù)基本關(guān)系式即可得解.

解答 解:∵B∈($\frac{π}{2}$,π),且sinB=$\frac{1}{3}$,
∴cosB=-$\sqrt{1-si{n}^{2}B}$=-$\sqrt{1-(\frac{1}{3})^{2}}$=-$\frac{2\sqrt{2}}{3}$,
∴tanA=tan(π-B)=-tanB=-$\frac{sinB}{cosB}$=-$\frac{\frac{1}{3}}{-\frac{2\sqrt{2}}{3}}$=$\frac{\sqrt{2}}{4}$.
故選:D.

點(diǎn)評(píng) 本題主要考查了誘導(dǎo)公式,同角三角函數(shù)基本關(guān)系式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知cos(π+α)=$\frac{3}{4}$,α∈($\frac{π}{2}$,π),求sinα,tanα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在長為12厘米的線段AB上任取一點(diǎn)C,現(xiàn)以線段AC,BC為鄰邊作一矩形,則該矩形的面積大于20平方厘米的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)M,N分別是曲線f(x)=-x3+x2(x<$\sqrt{e}$)與g(x)=alnx(x≥$\sqrt{e}$)上一點(diǎn),△MON是以O(shè)為直角頂點(diǎn)的直角三角形(其中O為坐標(biāo)原點(diǎn)),且斜邊的中點(diǎn)恰好在y軸上,則實(shí)數(shù)a的取值范圍是(0,$\frac{2}{e+1}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)f(x)=2sinx+cos2x的最小正周期是2π,值域是[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)集合A={x|$\frac{1}{4}$<2x-2<1},B={x|1-x2≤0},則A∩B等于(  )
A.{x|-1≤x≤1}B.{x|1≤x<2}C.{x|0<x≤1}D.{x|0<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.將函數(shù)y=sin2x-1的圖象向左平移$\frac{π}{4}$個(gè)單位,再向上平移1個(gè)單位,所得圖象的函數(shù)解析式為y=cos2x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)集合A={x|x>2},B={x|x<4},則A∩B=(2,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)是定義在D上的奇函數(shù),下列說法錯(cuò)誤的是( 。
A.?x∈D,f(-x)+f(x)=0B.?x0∈D,f(-x0)+f(x0)=0
C.?x0∈D,[f(-x0)]2-[f(x0)]2≠0D.?x∈D,[f(-x)]2-[f(x)]2=0

查看答案和解析>>

同步練習(xí)冊(cè)答案