7.下列命題正確的是(  )
A.小于90°的角是銳角B.鈍角是第二象限角
C.第一象限角一定不是負(fù)角D.第二象限角必大于第一象限角

分析 由銳角、鈍角的范圍判斷A、B,再由象限角的概念舉例說明C、D錯誤.

解答 解:∵0°<90°,但0°角不是銳角,∴A錯誤;
∵鈍角的范圍是(90°,180°),是第二象限角,∴B正確;
∵-350°是第一象限角,∴C錯誤;
-210°是第二象限角,30°是第一象限角,∵-210°<30°,∴D錯誤.
故選:B.

點評 本題考查象限角的概念,是基礎(chǔ)的會考題型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)a=$\sqrt{2}$,b=$\root{3}{5}$,c=$\root{6}{30}$,則a,b,c的大小關(guān)系是(  )
A.a>b>cB.c>a>bC.b>c>aD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.化簡:$\frac{x}{x-2}$÷($\frac{2x+4}{x-2}$-x+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}中,a1=1,a2 =3,an+2-an+1-2an =0,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.α、β是兩個不重合的平面,a、b是兩條不同直線,在下列條件下,可判定α⊥β的是(  )
A.a⊥α,a⊥βB.a?α,a⊥βC.a?α,b?β,a⊥bD.a?α,b⊥a,b∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在直角坐標(biāo)系xoy中,以O(shè)為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρsin(β+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$a,曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+cosθ}\\{y=-1+sinθ}\end{array}\right.$ (θ為參數(shù),0≤θ≤π).
(Ⅰ)求C1,C2的直角坐標(biāo)方程;
(Ⅱ)當(dāng)C1與C2有兩個公共交點時,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知向量$\overrightarrow{a}$,$\overrightarrow$是兩個不共線的向量,若$\overrightarrow{AB}$=λ1$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrow{AC}$=$\overrightarrow{a}$+λ2$\overrightarrow$(λ1,λ2∈R),則“A,B,C三點共線”是“λ1•λ2-1=0”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在滿足條件$\left\{\begin{array}{l}{2x-y-2≤0}\\{3x+y-3≥0}\\{x+y-7≤0}\end{array}\right.$的區(qū)域內(nèi)任取一點M(x,y),則點M(x,y)滿足不等式(x-1)2+y2<1的概率為( 。
A.$\frac{π}{60}$B.$\frac{π}{120}$C.1-$\frac{π}{60}$D.1-$\frac{π}{120}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.將一顆骰子連擲100次,則點6出現(xiàn)次數(shù)X的均值E(X)=$\frac{50}{3}$.

查看答案和解析>>

同步練習(xí)冊答案