分析 分兩種情況考慮,第一:當(dāng)所求直線與兩坐標(biāo)軸的截距不為0時,設(shè)出該直線的方程為x+y=a,把已知點坐標(biāo)代入即可求出a的值,得到直線的方程;第二:當(dāng)所求直線與兩坐標(biāo)軸的截距為0時,設(shè)該直線的方程為y=kx,把已知點的坐標(biāo)代入即可求出k的值,得到直線的方程,綜上,得到所有滿足題意的直線的方程.
解答 解:①當(dāng)所求的直線與兩坐標(biāo)軸的截距不為0時,設(shè)該直線的方程為x+y=a,
把(3,5)代入所設(shè)的方程得:a=8,則所求直線的方程為x+y=8即x+y-8=0;
②當(dāng)所求的直線與兩坐標(biāo)軸的截距為0時,設(shè)該直線的方程為y=kx,
把(3,5)代入所求的方程得:k=$\frac{5}{3}$,則所求直線的方程為y=$\frac{5}{3}$x即5x-3y=0.
綜上,所求直線的方程為:x+y-8=0或5x-3y=0.
點評 此題考查學(xué)生會根據(jù)條件設(shè)出直線的截距式方程和點斜式方程,考查了分類討論的數(shù)學(xué)思想,是一道綜合題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com