若正實數(shù)x,y滿足x+y=2,則
1
xy
的最小值為
 
考點:基本不等式
專題:不等式的解法及應(yīng)用
分析:利用基本不等式的性質(zhì)即可得出.
解答: 解:∵正實數(shù)x,y滿足x+y=2,
2≥2
xy
,化為xy≤1,∴
1
xy
≥1
,當(dāng)且僅當(dāng)x=y=1時取等號.
1
xy
的最小值為1.
故答案為:1.
點評:本題考查了基本不等式的性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合M={x|x≥x2,x∈R},N={y|y=2x,x∈R},則M∩N=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,函數(shù)f(x)的圖象是曲線OAB,其中點O、A、B的坐標(biāo)分別為(O,O),(1,2),(3,1),則f[f(3)]的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.
(1)當(dāng)a=3時,求A∩B;
(2)若A∩B=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|x-1|-2,則f[f(5)]=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程組
x-y=0
x+y=2
的解構(gòu)成的集合是( 。
A、{(1,1)}
B、{1,1}
C、(1,1)
D、{1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:滿足對任意的正整數(shù)n,an+2-an+1≤an+1-an都成立的數(shù)列{an}為“降步數(shù)列”.給出以下數(shù)列{an}(n∈N*):
①an=5n+3;②an=n2+n+1;③an=
n
;④an=2n+
1
n
;⑤an=
1
n2+n
;
其中是“降步數(shù)列”的有
 
(寫出所有滿足條件的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的中心在坐標(biāo)原點,焦點在x軸上,實軸長是虛軸長的2倍,且過點(2
2
,1),求雙曲線的標(biāo)準(zhǔn)方程及離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

焦點在x軸上的雙曲線,它的兩條漸近線的夾角為
π
3
,焦距為12,求此雙曲線的方程及離心率.

查看答案和解析>>

同步練習(xí)冊答案