【題目】紅隊隊員甲、乙、丙與藍隊隊員A、B、C進行圍棋比賽,甲對A,乙對B,丙對C各一盤,已知甲勝A,乙勝B,丙勝C的概率分別為,,,假設(shè)各盤比賽結(jié)果相互獨立.
(I)求紅隊至少兩名隊員獲勝的概率;
(II)用表示紅隊隊員獲勝的總盤數(shù),求的分布列和數(shù)學(xué)期望.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,、、、分別是、、、的中點.
(1)求證:、、、四點共面;
(2)求證:平面平面;
(3)若、分別為、的中點,求證:平面平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)y=f(x)(x∈R)滿足f(1+x)=f(1-x)且x∈[-1,1]時,f(x)=1-x2,函數(shù)g(x)=則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]內(nèi)的零點的個數(shù)為
A. 7 B. 8 C. 9 D. 10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某居民小區(qū)有兩個相互獨立的安全防范系統(tǒng)(簡稱系統(tǒng))和,系統(tǒng)和在任意時刻發(fā)生故障的概率分別為和.
(1)求在任意時刻至少有一個系統(tǒng)不發(fā)生故障的概率;
(2)設(shè)系統(tǒng)在3次相互獨立的檢測中不發(fā)生故障的次數(shù)為隨機變量,求的概率分布列及數(shù)學(xué)期望.(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知.
(1)求角C的值;
(2)若c=2,且△ABC的面積為,求a,b.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)是否存在實數(shù)、,使得函數(shù)的定義域和值域都是?若存在,請求出,的值;若不存在,請說明理由.
(2)若存在實數(shù),,使得函數(shù)的定義域是,值域是,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人在如圖所示的直角邊長為4米的三角形地塊的每個格點(指縱、橫直線的交叉點以及三角形的頂點)處都種了一株相同品種的作物.根據(jù)歷年的種植經(jīng)驗,一株該種作物的年收貨量(單位:kg)與它的“相近”作物株數(shù)之間的關(guān)系如下表所示:
X | 1 | 2 | 3 | 4 |
Y | 51 | 48 | 45 | 42 |
這里,兩株作物“相近”是指它們之間的直線距離不超過1米.
(Ⅰ)完成下表,并求所種作物的平均年收獲量;
Y | 51 | 48 | 45 | 42 |
頻數(shù) | 4 |
(Ⅱ)在所種作物中隨機選取一株,求它的年收獲量至少為48kg的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)求曲線在點處的切線方程;
(2)若關(guān)于的方程有三個不同的實根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是平行四邊形, 平面,點, 分別為, 的中點,且, .
(1)證明: 平面;
(2)設(shè)直線與平面所成角為,當在內(nèi)變化時,求二面角的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com