已知函數(shù)f(x)=2cos2x+2
3
sinxcosx,x∈R.
 (Ⅰ)求函數(shù)f(x)的最小正周期;  
 (Ⅱ)求函數(shù)f(x)在區(qū)間[-
π
6
π
4
]
上的值域.
考點(diǎn):三角函數(shù)中的恒等變換應(yīng)用,三角函數(shù)的周期性及其求法
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:(Ⅰ)首先把函數(shù)通過(guò)恒等變換變形成正弦型函數(shù),進(jìn)一步求出周期.
(Ⅱ)利用(Ⅰ)的函數(shù)關(guān)系式,通過(guò)已知的定義域求出函數(shù)的值域.
解答: 解:函數(shù)f(x)=2cos2x+2
3
sinxcosx=1+cos2x+
3
sin2x=2sin(2x
+
π
6
)+1
+1
所以:函數(shù)的周期為:T=π
(Ⅱ)由于x∈[-
π
6
,
π
4
]

所以:
2x+
π
6
∈[-
π
6
3
]

sin(2x+
π
6
)
∈[-
1
2
,1]

所以函數(shù)f(x)的值域?yàn)椋篬0,3]
點(diǎn)評(píng):本題考查的知識(shí)要點(diǎn):三角函數(shù)關(guān)系式的恒等變形,正弦型函數(shù)的周期,根據(jù)定義域求正弦型函數(shù)的值域.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(7,-4)關(guān)于直線l的對(duì)稱點(diǎn)為B(-5,6),則直線l的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x-2-x
(1)判斷函數(shù)f(x)的奇偶性;
(2)證明:函數(shù)f(x)為(-∞,+∞)上的增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x2-bx+a的圖象如圖所示,則函數(shù)g(x)=lnx+f′(x)的零點(diǎn)所在的區(qū)間是( 。
A、(
1
4
,
1
2
)
B、(
1
2
,1)
C、(1,2)
D、(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

S=1+2x+3x2+4x3+…+nxn-1(x≠0且x≠1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某興趣小組由4男2女共6名同學(xué).
(1)從6人中任意選取3人參加比賽,求所選3人中至少有1名女同學(xué)的概率;
(2)將6人平均分成兩組進(jìn)行比賽,列出所有的分組方法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

要從12個(gè)人中選出5人去開(kāi)會(huì),按下列要求,分別有多少種不同的選法:
(1)甲乙丙三人必須入選;
(2)丁一人不能入選;
(3)甲乙丙三人只有一人入選;
(4)甲乙丙三人至少有一人入選.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=
ax+2
(a<0)在區(qū)間(-∞,1]上恒有意義,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)與函數(shù)y=g(x)的圖象如圖所示,則函數(shù)y=f(x)•g(x)的圖象可能是下面的( 。
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊(cè)答案