分析 當(dāng)且僅當(dāng)PB=PC=2時,三棱錐的體積最大,如圖所示,將P-ABC視為正四棱柱的一部分,求出△ABC外接圓的半徑,即可求出球的表面積.
解答 解:由題意,V=$\frac{1}{3}$•$\frac{1}{2}$•1•PB•PC≤$\frac{1}{12}$(PB+PC)2=$\frac{4}{3}$,
當(dāng)且僅當(dāng)PB=PC=2時,三棱錐的體積最大,
如圖所示,將P-ABC視為正四棱柱的一部分,
則CD=2R,即PA2+PB2+PC2=4R2=9,可得R=$\frac{3}{2}$,
故球的表面積是:S=4π•$\frac{9}{4}$=9π,
故答案為:9π.
點評 本題考查三棱錐體積的計算,考查學(xué)生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{13}$=1 | B. | $\frac{{x}^{2}}{13}$-$\frac{{y}^{2}}{9}$=1 | C. | $\frac{{x}^{2}}{3}$-y2=1 | D. | x2-$\frac{{y}^{2}}{3}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,1) | B. | [0,1) | C. | [0,3] | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要 | B. | 必要不充分 | ||
C. | 充要 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 2 | C. | -$\frac{1}{2}$ | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 中位數(shù)為14 | B. | 眾數(shù)為13 | C. | 平均數(shù)為15 | D. | 方差為19 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,$\frac{1}{2}$)∪(2,+∞) | B. | (0,$\frac{1}{2}$]∪[2,+∞) | C. | [$\frac{1}{2}$,2] | D. | (0,2] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com