【題目】已知隨機(jī)變量X滿足D(X)=1,則D(2X+3)=(
A.2
B.4
C.6
D.8

【答案】B
【解析】解:∵隨機(jī)變量X滿足D(X)=1,
∴D(2X+3)=22D(X)=4D(X)=4.
故選:B.
【考點(diǎn)精析】掌握離散型隨機(jī)變量及其分布列是解答本題的根本,需要知道在射擊、產(chǎn)品檢驗(yàn)等例子中,對于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡稱分布列.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a,b∈R.“a=0”是“復(fù)數(shù)a+bi是純虛數(shù)”的(
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=x24x+3n若對任意nN*,fx≥0[m,+∞)上恒成立,則實(shí)數(shù)m的取值范圍是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有6名選手參加演講比賽,觀眾甲猜測:4號或5號選手得第一名;觀眾乙猜測:3號選手不可能得第一名;觀眾丙猜測:1,2,6號選手中的一位獲得第一名;觀眾丁猜測:4,5,6號選手都不可能獲得第一名.比賽后發(fā)現(xiàn)沒有并列名次,且甲、乙、丙、丁中只有1人猜對比賽結(jié)果,此人是(
A.甲
B.乙
C.丙
D.丁

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)p , q均為實(shí)數(shù),則“ q<0 ”是“方程 x2+px+q=0 有一個正實(shí)根和一個負(fù)實(shí)根”的條件.
(選填:充要、必要不充分、充分不必要、既不充分也不必要)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某射手射擊所得環(huán)數(shù)ξ的分布列如表,已知ξ的期望Eξ=8.9,則y的值為

ξ

7

8

9

10

P

x

0.1

0.3

y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,若a5a6=27,則log3a1+log3a2+…+log3a10=______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若f(x)=ax4+bx2+c滿足f′(1)=2,則f′(﹣1)=(
A.﹣4
B.﹣2
C.2
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從{1,2,3,4,5}中隨機(jī)選取一個數(shù)為a,從{1,2,3}中隨機(jī)選取一個數(shù)為b,則使得b≠a的不同取法共有種.

查看答案和解析>>

同步練習(xí)冊答案