已知函數(shù):
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)的圖像在點(diǎn)處的切線的傾斜角為,問(wèn):在什么范圍取值時(shí),函數(shù)在區(qū)間上總存在極值?
(3)求證:.
(1) (1分),
當(dāng)時(shí),的單調(diào)增區(qū)間為,減區(qū)間為;…………2分
當(dāng)時(shí),的單調(diào)增區(qū)間為,減區(qū)間為;…………3分
當(dāng)時(shí),不是單調(diào)函數(shù)…………4分
(2)因?yàn)楹瘮?shù)的圖像在點(diǎn)處的切線的傾斜角為,
所以,所以,, ……………..…6分
, …………………………………….……7分
要使函數(shù)在區(qū)間上總存在極值,所以只需, ……………………..……9分
解得……………………………………10分
⑶令此時(shí),所以,
由⑴知在上單調(diào)遞增,∴當(dāng)時(shí),
即,∴對(duì)一切成立,………12分
∵,則有,∴
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(15分)已知函數(shù).
(1)若的切線,函數(shù)處取得極值1,求,,的值;
證明:;
(3)若,且函數(shù)上單調(diào)遞增,
求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1)若函數(shù)的圖象在處的切線方程為,求的值;
(2)若函數(shù)在上是增函數(shù),求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知x = 4是函數(shù)的一個(gè)極值點(diǎn),(,b∈R).
(Ⅰ)求的值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若函數(shù)有3個(gè)不同的零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)。
(I)求的單調(diào)區(qū)間;
(II)若對(duì)于所有的成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)(13分)
(1)若上的最大值
(2)若在區(qū)間[1,2]上為減函數(shù),求a的取值范圍。
(3)若直線為函數(shù)的圖象的一條切線,求a的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題12分)
已知二次函數(shù) (,c為常數(shù)且1《c《4)的導(dǎo)函數(shù)的圖象如圖所示:
(1).求的值;
(2)記,求在上的最大值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)y=f(x)是定義在區(qū)間[-,]上的偶函數(shù),且
x∈[0,]時(shí),
(1)求函數(shù)f(x)的解析式;
(2)若矩形ABCD的頂點(diǎn)A,B在函數(shù)y=f(x)的圖像上,頂點(diǎn)C,D在x軸上,求矩形ABCD面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1)求函數(shù)的極大值; (2)
(3)對(duì)于函數(shù)定義域上的任意實(shí)數(shù),若存在常數(shù),使得都成立,則稱直線為函數(shù)的分界線。設(shè),試探究函數(shù)是否存在“分界線”?若存在,請(qǐng)給予證明,并求出的值;若不存在,請(qǐng)說(shuō)明理由
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com