A. | [-12,6] | B. | [-6,12] | C. | [-3,12] | D. | [6,12] |
分析 由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.
解答 解:由約束條件$\left\{\begin{array}{l}{x+2y≥0}\\{x-y≤0}\\{0≤y≤6}\end{array}\right.$作出可行域如圖,
聯(lián)立$\left\{\begin{array}{l}{y=6}\\{x-y=0}\end{array}\right.$,得A(6,6);
聯(lián)立$\left\{\begin{array}{l}{y=6}\\{x+2y=0}\end{array}\right.$,得B(-12,6).
化目標(biāo)函數(shù)z=x+y為y=-x+z,
由圖可知,當(dāng)直線y=-x+z過A時(shí),直線在y軸上的截距最大,z有最大值為6+6=12;
當(dāng)直線y=-x+z過B時(shí),直線在y軸上的截距最小,z有最小值為-12+6=-6.
∴z的取值范圍是[-6,12].
故選:B.
點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查數(shù)形結(jié)合的解題思想方法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 當(dāng)CD為Rt△ABC的中線時(shí),d取得最小值 | |
B. | 當(dāng)CD為Rt△ABC的角平分線時(shí),d取得最小值 | |
C. | 當(dāng)CD為Rt△ABC的高線時(shí),d取得最小值 | |
D. | 當(dāng)D在Rt△ABC的AB邊上移動(dòng)時(shí),d為定值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com