分析 由勾股定理,求得BC=3,再由向量垂直的條件:數(shù)量積為0,向量的平方即為模的平方,計算即可得到所求.
解答 解:直角三角形ABC中,∠C=90°,AB=5,AC=4,
即有BC=$\sqrt{{5}^{2}-{4}^{2}}$=3,
則$\overrightarrow{AB}•\overrightarrow{BC}$=-($\overrightarrow{CB}$-$\overrightarrow{CA}$)•$\overrightarrow{CB}$
=-$\overrightarrow{CB}$2+$\overrightarrow{CA}$•$\overrightarrow{CB}$=-9+0=-9.
故答案為:-9.
點評 本題考查向量的數(shù)量積的性質(zhì),考查向量的平方和垂直的條件,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-2,1] | B. | [-2,2] | C. | [1,2] | D. | (1,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x<-2或x>2} | B. | {x|-2<x<0或x>3} | C. | {x|x<-3或-1<x<1} | D. | {x|-3<x<-1或x>1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x+1}{x-1}$ | B. | $\frac{x-1}{x}$ | C. | $\frac{x+1}{x-1}$ | D. | $\frac{x}{x-1}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{5}$ | B. | $\frac{7}{25}$ | C. | $\frac{25}{7}$ | D. | $\frac{24}{25}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com