7.已知10x=4,10y=81,求10${\;}^{2x-\frac{y}{4}}$.

分析 求出x的表達(dá)式,代入所求表達(dá)式,求解即可.

解答 解:10x=4,可得x=lg4,
10y=81,y=lg81,
10${\;}^{2x-\frac{y}{4}}$=${10}^{2lg4-\frac{lg81}{4}}$=10lg16-lg3=$\frac{16}{3}$.
故答案為:$\frac{16}{3}$.

點(diǎn)評(píng) 本題考查對(duì)數(shù)運(yùn)算法則的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知二次函數(shù)f(x)=ax2+bx+1(其中b>0)的圖象過點(diǎn)(1,4),且其值域?yàn)閇0,+∞).
(1)求f(x)的解析式;
(2)若g(x)=f(x)-kx在區(qū)間[-2,2]上是單調(diào)函數(shù),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知A(0,-1),B(t,3).
命題p:直線AB與拋物線C:x2=$\frac{1}{2}$y沒有公共點(diǎn);
命題q:直線BA與直線l:2x+y=4有公共點(diǎn);
若命題“p∧q”為假命題,“p∨q”為真命題,試求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.過拋物線y2=6x的焦點(diǎn)的直線交拋物線于A(x1,y1)、B(x2,y2)兩點(diǎn),則y1y2=-9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知f(x)=x2+(lga+2)x+lgb,且f(-1)=-2,f(x)≥2x(x∈R),求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)△AnBnCn為一族一邊長(zhǎng)始終相等的三角形,角An,Bn,Cn的對(duì)邊分別為an,bn,cn(n∈N*),滿足b1+c1=2a1,an+1=an,且an,bn+1,cn與an,cn+1,bn分別成等差數(shù)列,則角An的最大值是( 。
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,直三棱柱ABC-A1B1C1中,D、E分別是AB、BB1的中點(diǎn).
(Ⅰ)證明:BC1∥平面A1CD;
(Ⅱ)設(shè)AA1=AC=CB=2,AB=2$\sqrt{2}$,求異面直線BC1與A1D所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.等比數(shù)列{an}的前n項(xiàng)和為Sn,已知S3=a2+5a1,a7=2,則a5=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.y=[sinx•cos]+[sinx+cosx]的值域?yàn)閧-2,-1,1}([x]表示不超過實(shí)數(shù)x的最大整數(shù))

查看答案和解析>>

同步練習(xí)冊(cè)答案