5.已知向量$\overrightarrow{a}$=(3,-1),$\overrightarrow$=(2,1),則$\overrightarrow{a}$在$\overrightarrow$方向上的投影為$\sqrt{5}$.

分析 求出$\overrightarrow{a}•\overrightarrow$,代入投影公式計(jì)算即可.

解答 解:$\overrightarrow{a}•\overrightarrow$=6-1=5,|$\overrightarrow$|=$\sqrt{5}$,
∴$\overrightarrow{a}$在$\overrightarrow$方向上的投影為|$\overrightarrow{a}$|cos<cos$\overrightarrow{a},\overrightarrow$>=|$\overrightarrow{a}$|$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}$=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow|}$=$\frac{5}{\sqrt{5}}$=$\sqrt{5}$.
故答案為:$\sqrt{5}$.

點(diǎn)評 本題考查了平面向量的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.命題p:將函數(shù)y=cosx•sinx的圖象向右平移$\frac{3π}{4}$個(gè)單位可得到y(tǒng)=$\frac{1}{2}$cos2x的圖象;命題q:對?m>0,雙曲線2x2-y2=m2的離心率為$\sqrt{3}$,則下列結(jié)論正確的是( 。
A.p是假命題B.¬p是真命題C.p∨q是真命題D.p∧q是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知直線l1:mx+y+1=0,l2:(m-3)x+2y-1=0,則“m=1”是“l(fā)1⊥l2”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.如圖是一個(gè)算法流程圖,則輸出的x值為( 。
A.95B.47C.23D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$與拋物線y2=2px(p>0)共焦點(diǎn)F2,拋物線上的點(diǎn)M到y(tǒng)軸的距離等于|MF2|-1,且橢圓與拋物線的交點(diǎn)Q滿足|QF2|=$\frac{5}{2}$.
(Ⅰ)求拋物線的方程和橢圓的方程;
(Ⅱ)過拋物線上的點(diǎn)P作拋物線的切線y=kx+m交橢圓于A、B兩點(diǎn),求此切線在x軸上的截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知i為虛數(shù)單位,z(1-i)=1+i,則復(fù)數(shù)z的共軛復(fù)數(shù)為( 。
A.-iB.iC.2iD.-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若(3x-1)5=a0+a1x+a2x2+…+a5x5,則a1+2a2x+3a3x+4a4+5a5=( 。
A.80B.120C.180D.240

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)f(x)是偶函數(shù),g(x)是奇函數(shù),且f(x)+g(x)=ex+1,則f(x)=$\frac{{e}^{x}+{e}^{-x}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.“x>3”是“$\frac{1}{x}$$<\frac{1}{3}$”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分又不必要條件

查看答案和解析>>

同步練習(xí)冊答案