【題目】如圖,四邊形均為菱形, ,且.

(l)求證:

(2)求證:

(3)設(shè),求四面體的體積

【答案】(1)見解析;(2)見解析;(3) .

【解析】試題分析:(1)證線面垂直根據(jù)題意可先證,(2)線面平行證明則只需證線線平行也可通過面面平行得到結(jié)論因?yàn)樗倪呅?/span>均為菱形,所以,所以平面 (3)求體積可根據(jù)等體積法求解

試題解析:(1)證明:設(shè)AC與BD相交于點(diǎn)O,連結(jié)FO.

因?yàn)樗倪呅蜛BCD為菱形,所以

又FA=FC,且O為AC中點(diǎn).所以.

因?yàn)?/span>

所以.

(2)證明:因?yàn)樗倪呅?/span>均為菱形,

所以

所以平面

所以.

(3)解:因?yàn)樗倪呅蜝DEF為菱形,且,

所以為等邊三角形.

因?yàn)?/span>中點(diǎn),所以

由(1)知 ,故 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】矩形的兩條對(duì)角線相交于點(diǎn), 邊所在的直線的方程為,點(diǎn)在邊所在的直線上. 

(1)求邊所在直線的方程;

(2)求矩形外接圓的方程;

(3)過點(diǎn)的直線被矩形的外接圓截得的弦長(zhǎng)為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C經(jīng)過點(diǎn),且圓心在直線上,又直線與圓C交于P,Q兩點(diǎn).

1)求圓C的方程;

2)若,求實(shí)數(shù)的值;

(3)過點(diǎn)作直線,且交圓CM,N兩點(diǎn),求四邊形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與拋物線相切,且與軸的交點(diǎn)為,點(diǎn).若動(dòng)點(diǎn)與兩定點(diǎn)所構(gòu)成三角形的周長(zhǎng)為6.

(Ⅰ) 求動(dòng)點(diǎn)的軌跡的方程;

(Ⅱ) 設(shè)斜率為的直線交曲線兩點(diǎn),當(dāng),且位于直線的兩側(cè)時(shí),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知, , ,斜率為的直線過點(diǎn),且和以為圓相切.

(1)求圓的方程;

(2)在圓上是否存在點(diǎn),使得,若存在,求出所有的點(diǎn)的坐標(biāo);若不存在說明理由;

(3)若不過的直線與圓交于, 兩點(diǎn),且滿足, 的斜率依次為等比數(shù)列,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正方體ABCD﹣A1B1C1D1的棱長(zhǎng)為8cm,M,N,P分別是AB,A1D1 , BB1的中點(diǎn).
(1)畫出過M,N,P三點(diǎn)的平面與平面A1B1C1D1的交線以及與平面BB1C1C的交線;
(2)設(shè)過M,N,P三點(diǎn)的平面與B1C1交于Q,求PQ的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1 , 則異面直線BA1與AC1所成的角等于( 。

A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為減少空氣污染,某市鼓勵(lì)居民用電(減少燃?xì)饣蛉济海捎梅侄斡?jì)費(fèi)的方法計(jì)算電費(fèi).每月用電不超過100度時(shí),按每度0.57元計(jì)算,每月用電量超過100度時(shí),其中的100度仍按原標(biāo)準(zhǔn)收費(fèi),超過的部分每度按0.5元計(jì)算.
(1)設(shè)月用電x度時(shí),應(yīng)交電費(fèi)y元,寫出y關(guān)于x的函數(shù)關(guān)系式;
(2)小明家第一季度繳納電費(fèi)情況如下:?jiǎn)栃∶骷业谝患径裙灿秒姸嗌俣龋?

月份

一月

二月

三月

合計(jì)

交費(fèi)金額

76元

63元

45.6元

184.6元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若不等式1-ax2-4x+6>0的解集是{x|-3<x<1}.

(1)解不等式2x22-ax-a>0;

(2)b為何值時(shí),ax2+bx+30的解集為R.

查看答案和解析>>

同步練習(xí)冊(cè)答案