【題目】已知圓C經(jīng)過點,且圓心在直線上,又直線與圓C交于P,Q兩點.

1)求圓C的方程;

2)若,求實數(shù)的值;

(3)過點作直線,且交圓CM,N兩點,求四邊形的面積的最大值.

【答案】1x 2 +y 2 =42k=037

【解析】試題分析:(1)設圓心為,半徑為.故,建立方程,從而可求圓的方程;(2)利用向量的數(shù)量積公式,求得,計算圓心到直線的距離,即可求解實數(shù)的值;(3)方法1、設圓到直線的距離分別為,求得,根據(jù)垂徑定理和勾股定理,可得,在利用基本不等式,可求四邊形面積的最大值;方法2、利用弦長公式, ,表示三角形的面積,在利用基本不等式,可求四邊形面積的最大值.

試題解析:(1)設圓心為,半徑為.故,易得,

因此圓的方程為

2)因為,且的夾角為,

, ,所以到直線的距離,又,所以

又解:設P, ,則,即,

,,

代入;

3)設圓心到直線的距離分別為,四邊形的面積為

因為直線都經(jīng)過點,且,根據(jù)勾股定理,有,

當且僅當時,等號成立,所以

3)又解:由已知,由(2)的又解可得

同理可得,

,

當且僅當時等號成立,所以

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若上的最大值為,求實數(shù)的值;

(2)若對任意,都有恒成立,求實數(shù)的取值范圍;

(3)在(1)的條件下,設,對任意給定的正實數(shù),曲線 上是否存在兩點、,使得是以為坐標原點)為直角頂點的直角三角形,且此三角形斜邊中點在軸上?請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)若曲線處的切線方程為.

(Ⅰ)求的值;

(Ⅱ)若對于任意,總有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣2)的定義域為集合A,函數(shù)的值域為集合B.
(1)求A∪B;
(2)若集合C={x|a≤x≤3a﹣1},且B∩C=C,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2ax+2,x∈[﹣5,5]
(1)求實數(shù)a的取值范圍,使y=f(x)在定義域上是單調(diào)遞減函數(shù);
(2)用g(a)表示函數(shù)y=f(x)的最小值,求g(a)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)),,

(Ⅰ) 試求曲線在點處的切線l與曲線的公共點個數(shù);(Ⅱ) 若函數(shù)有兩個極值點,求實數(shù)a的取值范圍.

(附:當x趨近于0時, 趨向于

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校在一次第二課堂活動中,特意設置了過關智力游戲,游戲共五關.規(guī)定第一關沒過者沒獎勵,過 關者獎勵件小獎品(獎品都一樣).下圖是小明在10次過關游戲中過關數(shù)的條形圖,以此頻率估計概率.

(Ⅰ)估計小明在1次游戲中所得獎品數(shù)的期望值;

(Ⅱ)估計小明在3 次游戲中至少過兩關的平均次數(shù);

(Ⅲ)估計小明在3 次游戲中所得獎品超過30件的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形均為菱形, ,且.

(l)求證:

(2)求證:

(3)設,求四面體的體積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)是[0,1]上的不減函數(shù),即對于0≤x1≤x2≤1有f(x1)≤f(x2),且滿足(1)f(0)=0;(2)f( )= f(x);(3)f(1﹣x)=1﹣f(x),則f( )=(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案