19.(重點中學(xué)做)ABCD-A1B1C1D1是棱長為1的正方體,一個質(zhì)點從A出發(fā)沿正方體的面對角線運動,每走完一條面對角線稱為“走完一段”,質(zhì)點的運動規(guī)則如下:運動第i段與第i+2所在直線必須是異面直線(其中i是正整數(shù)).質(zhì)點走完的第99段與第1段所在的直線所成的角是( 。
A.B.30°C.60°D.90°

分析 由質(zhì)點的運動規(guī)則得到質(zhì)點走過6段后又回到起點A,可以看作以4為周期,由此能求出質(zhì)點走完的第99段與第1段所在的直線所成的角.

解答 解:不妨設(shè)質(zhì)點運行路線為AB1→B1C→CD1→D1A
即走過4段后又回到起點A,可以看作以4為周期,
∵99=4×24+3,
∴質(zhì)點走完的第99段與第1段所在的直線分別為AB1與CD1
∵AB1⊥CD1,
∴質(zhì)點走完的第99段與第1段所在的直線所成的角是90°.
故選:D.

點評 本題考查異面直線所成角的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在平面四邊形ABCD中,若AB=1,BC=2,B=60°,C=45°,D=120°,則AD=$\frac{\sqrt{6}-\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知變量x,y滿足$\left\{\begin{array}{l}{x-y-2≤0}\\{x+2y-5≥0}\\{y-2≤0}\end{array}\right.$,則2x+y的最大值為(  )
A.4B.7C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)全集U={-2,-1,0,1,2},集合M={-1,0,1},N={x|x2-x-2=0},則(∁UM)∩N=( 。
A.{2}B.{-1}C.{-2,-1,2}D.{-1,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,E,F(xiàn)分別是正方形ABCD的邊BC,CD的中點,沿圖中虛線折起來,它能形成怎樣的幾何體?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,ABCD是直角梯形,AB∥CD,AB=2CD=2,CD=BC,E是AB的中點,DE⊥AB,F(xiàn)是AC與DE的交點.
(Ⅰ)求sin∠CAD的值;
(Ⅱ)求△ADF的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某市組織高一全體學(xué)生參加計算機操作比賽,等級分為1至10分,隨機調(diào)閱了A、B兩所學(xué)校各60名學(xué)生的成績,得到樣本數(shù)據(jù)如表:
B校樣本數(shù)據(jù)統(tǒng)計表:
成績(分)12345678910
人數(shù)(個)000912219630
(Ⅰ)計算兩校樣本數(shù)據(jù)的均值和方差,并根據(jù)所得數(shù)據(jù)進行比較.
(Ⅱ)從A校樣本數(shù)據(jù)成績分別為7分、8分和9分的學(xué)生中按分層抽樣方法抽取6人,若從抽取的6人中任選2人參加更高一級的比賽,求這2人成績之和大于或等于15的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=lg(4-x2)的定義域為(-2,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系xOy中,已知點P(1,$\frac{3}{2}$)在橢圓C:$\frac{{x}^{2}}{{a}^{2}}$$+\frac{{y}^{2}}{^{2}}$=1(a>b>0)上,P到橢圓C的兩個焦點的距離之和為4.
(1)求橢圓C的方程;
(2)若點M,N是橢圓C上的兩點,且四邊形POMN是平行四邊形,求點M,N的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案