【題目】在如圖所示的不規(guī)則幾何體中,已知四邊形是正方形,四邊形是平行四邊形,平面平面,.
(1)證明:;
(2)求直線與平面所成角的正切值.
【答案】(1)證明見解析;(2)3
【解析】
(1)由面面垂直的性質(zhì)定理得到線面垂直,再由線面垂直得到線線垂直;
(2)先建立適當?shù)目臻g直角坐標系,再利用空間向量法求所求的線面角的正弦值,也可以用傳統(tǒng)法,先找到所求角的余角,再求線面角的正切值.
(1)證明:四邊形是正方形,,
平面平面,且平面平面,
平面,,平面,,
又,,.
,平面,又平面,.
(2)解法一:建立如圖所示的空間直角坐標系,
設,則,
,,,
,設平面的法向量為,
,
不妨令,則,平面的一個法向量為,
則,設直線與平面所成的角為,
則,因為,,
故直線與平面所成角的正切值為3.
解法二:取的中點,連接,四邊形是正方形,
,,平面,平面,
,平面,平面,
,平面平面,
由(1)知,平面,平面,
平面,,又,
平面,取的中點,連接,則,
平面,即所求角的余角,令,
在中,易知,
,
設直線與平面所成的角為,則,
,
故直線與平面所成角的正切值為3.
科目:高中數(shù)學 來源: 題型:
【題目】2019年10月20日,第六屆世界互聯(lián)網(wǎng)大會發(fā)布了15項“世界互聯(lián)網(wǎng)領先科技成果”,其中有5項成果均屬于芯片領域,分別為華為高性能服務器芯片“鯤鵬920”、清華大學“面向通用人工智能的異構融合天機芯片”、“特斯拉全自動駕駛芯片”、寒武紀云端AI芯片、“思元270”、賽靈思“Versal自適應計算加速平臺”.現(xiàn)有3名學生從這15項“世界互聯(lián)網(wǎng)領先科技成果”中分別任選1項進行了解,且學生之間的選擇互不影響,則至少有1名學生選擇“芯片領域”的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知圓柱內(nèi)有一個三棱錐,為圓柱的一條母線,,為下底面圓的直徑,,.
(1)在圓柱的上底面圓內(nèi)是否存在一點,使得平面?證明你的結論.
(2)設點為棱的中點,,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=﹣x+|2x+1|,不等式f(x)<2的解集是M.
(Ⅰ)求集合M;
(Ⅱ)設a,b∈M,證明:|ab|+1>|a|+|b|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,AB是圓O:x2+y2=1的直徑,且點A在第一象限;圓O1:(x﹣a)2+y2=r2(a>0)與圓O外離,線段AO1與圓O1交于點M,線段BM與圓O交于點N,且,則a的取值范圍為_______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P—ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AB=2,AD=AP=3,點M是棱PD的中點.
(1)求二面角M—AC—D的余弦值;
(2)點N是棱PC上的點,已知直線MN與平面ABCD所成角的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等比數(shù)列{an}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中項.數(shù)列{bn}滿足b1=1,數(shù)列{(bn+1﹣bn)an}的前n項和為2n2+n.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{bn}的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓:過點,橢圓的離心率為.
(1)求橢圓的標準方程;
(2)如圖,設直線與圓相切與點,與橢圓相切于點,當為何值時,線段長度最大?并求出最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com