【題目】在如圖所示的不規(guī)則幾何體中,已知四邊形是正方形,四邊形是平行四邊形,平面平面,.

1)證明:

2)求直線與平面所成角的正切值.

【答案】1)證明見解析;(23

【解析】

1)由面面垂直的性質(zhì)定理得到線面垂直,再由線面垂直得到線線垂直;

2)先建立適當?shù)目臻g直角坐標系,再利用空間向量法求所求的線面角的正弦值,也可以用傳統(tǒng)法,先找到所求角的余角,再求線面角的正切值.

1)證明:四邊形是正方形,,

平面平面,且平面平面,

平面,平面,

,,.

,平面,又平面.

2)解法一:建立如圖所示的空間直角坐標系,

,則,

,,

,設平面的法向量為,

不妨令,則,平面的一個法向量為

,設直線與平面所成的角為,

,因為,

故直線與平面所成角的正切值為3.

解法二:取的中點,連接四邊形是正方形,

,平面,平面

,平面,平面

,平面平面,

由(1)知,平面,平面

平面,,又,

平面,取的中點,連接,則

平面,即所求角的余角,令

中,易知,

,

設直線與平面所成的角為,則,

,

故直線與平面所成角的正切值為3.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】20191020日,第六屆世界互聯(lián)網(wǎng)大會發(fā)布了15世界互聯(lián)網(wǎng)領先科技成果,其中有5項成果均屬于芯片領域,分別為華為高性能服務器芯片鯤鵬920”、清華大學面向通用人工智能的異構融合天機芯片、特斯拉全自動駕駛芯片、寒武紀云端AI芯片、思元270”、賽靈思“Versal自適應計算加速平臺.現(xiàn)有3名學生從這15世界互聯(lián)網(wǎng)領先科技成果中分別任選1項進行了解,且學生之間的選擇互不影響,則至少有1名學生選擇芯片領域的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知圓柱內(nèi)有一個三棱錐為圓柱的一條母線,為下底面圓的直徑,.

1)在圓柱的上底面圓內(nèi)是否存在一點,使得平面?證明你的結論.

2)設點為棱的中點,,求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=﹣x+|2x+1|,不等式f(x)<2的解集是M.

(Ⅰ)求集合M;

(Ⅱ)設a,b∈M,證明:|ab|+1>|a|+|b|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,已知平面,,點為線段的中點.

1)求證:平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,AB是圓Ox2y21的直徑,且點A在第一象限;圓O1(xa)2y2r2(a0)與圓O外離,線段AO1與圓O1交于點M,線段BM與圓O交于點N,且,則a的取值范圍為_______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD是矩形,PA⊥平面ABCD,AB2,ADAP3,點M是棱PD的中點.

1)求二面角MACD的余弦值;

2)點N是棱PC上的點,已知直線MN與平面ABCD所成角的正弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等比數(shù)列{an}的公比q1,且a3+a4+a528,a4+2a3,a5的等差中項.數(shù)列{bn}滿足b11,數(shù)列{bn+1bnan}的前n項和為2n2+n

1)求數(shù)列{an}的通項公式;

2)求數(shù)列{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓過點,橢圓的離心率為.

1)求橢圓的標準方程;

2)如圖,設直線與圓相切與點,與橢圓相切于點,當為何值時,線段長度最大?并求出最大值.

查看答案和解析>>

同步練習冊答案