14.已知等差數(shù)列{an}中,a2=6,前7項和S7=84,則a6=18.

分析 利用等差數(shù)列的通項公式、前n項和公式列出方程組,求出首項和公差,由此能求出a6

解答 解:等差數(shù)列{an}中,a2=6,前7項和S7=84,
∴$\left\{\begin{array}{l}{{a}_{2}={a}_{1}+d=6}\\{{S}_{7}=7{a}_{1}+\frac{7×6}{2}d=84}\end{array}\right.$,
a1=3,d=3,
∴a6=a1+5d=18.
故答案為:18.

點評 本題考查等差數(shù)列的第6項的求法,是基礎(chǔ)題,解題時要認真審題,注意等差數(shù)列的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)集合A={-1,0,1},B={x|x2-2x-3≤0},則A∩B=(  )
A.{-1,0,1}B.{0}C.(-1,1)D.(-1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知tanα=2,α∈(0,$\frac{π}{2}$),則sin2α+cos2α=$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知集合A={x|2x>1},B={x|x2-2x-3<0},則A∩B=( 。
A.(-1,0)B.(0,1)C.(0,3)D.(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知向量$\overrightarrow{|a|}=2$,$\overrightarrow{|b|}$與$({\overrightarrow b-\overrightarrow a})$的夾角為30°,則$\overrightarrow{|b|}$最大值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知直線l:x+my-3=0與圓C:x2+y2=4相切,則m=$±\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知y=f(x)是定義在R上的奇函數(shù),當(dāng)x>0時,f(x)=2x-1,則f(-2)=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知拋物線G的頂點在原點,焦點在y軸正半軸上,拋物線上的點P(m,4)到其焦點F的距離等于5.
(Ⅰ)求拋物線G的方程;
(Ⅱ)如圖過拋物線焦點F的直線l與拋物線交于A、B
兩點,與圓M:(x-1)2+(y-4)2=4交于C、D兩點,若|AC|=|BD|,求三角形OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ax(lnx-1)-x2(a∈R)恰有兩個極值點x1,x2,且x1<x2
(Ⅰ)求實數(shù)a的取值范圍;
(Ⅱ)若不等式lnx1+λlnx2>1+λ恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案