5.從某大學(xué)隨機抽取的5名女大學(xué)生的身高x(厘米)和體重y(公斤)數(shù)據(jù)如表
x165160175155170
y5852624360
根據(jù)上表可得回歸直線方程為$\hat y=0.92x+\hat a$,則$\hat a$=(  )
A.-104.4B.104.4C.-96.8D.96.8

分析 根據(jù)所給的表格做出本組數(shù)據(jù)的樣本中心點,根據(jù)樣本中心點在線性回歸直線上,利用待定系數(shù)法做出a的值.

解答 解:由表中數(shù)據(jù)可得$\overline{x}$=167,$\overline{y}$=55,
∵($\overline{x}$,$\overline{y}$)一定在回歸直線方程$\stackrel{∧}{y}$=0.92x+$\stackrel{∧}{a}$上,
∴55=0.92×167+$\stackrel{∧}{a}$,
解得$\stackrel{∧}{a}$=-96.84.
故選:C.

點評 本題考查了線性回歸方程的應(yīng)用問題,解題的關(guān)鍵是線性回歸直線過樣本的中心點,這是求解線性回歸方程的步驟之一.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=sinx(-$\frac{π}{2}$$<x<\frac{π}{2}$),滿足f(x)<$\frac{\sqrt{3}}{2}$的x的取值范圍是( 。
A.(-$\frac{π}{6}$,$\frac{π}{6}$)B.(-$\frac{π}{2}$,$\frac{π}{6}$)C.(-$\frac{π}{2}$,$\frac{π}{3}$)D.(-$\frac{π}{3}$,$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知F1,F(xiàn)2分別為雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的左、右焦點,若存在過F1的直線分別交雙曲線C的左、右支于A,B兩點,使得∠BAF2=∠BF2F1,則雙曲線C的離心率e的取值范圍是( 。
A.(3,+∞)B.(1,2+$\sqrt{5}$)C.(3,2+$\sqrt{5}$)D.(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若復(fù)數(shù)z滿足z=$\frac{|8+6i|}{6-8i}$(i是虛數(shù)單位),則z的虛部為(  )
A.4B.$\frac{4}{5}$C.-4D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知F1,F(xiàn)2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0)的左.右焦點,且|F1F2|=2,若P是該雙曲線右支上的一點,且滿足|PF1|=2|PF2|,則△PF1F2面積的最大值是( 。
A.2B.$\frac{5}{3}$C.$\frac{4}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知①x=x-1,②x=x-2,③x=x-3,④x=x-4在如圖所示的程序框圖中,如果輸入x=10,而輸出y=4,則在空白處可填入( 。
A.①②③B.②③C.③④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知數(shù)列{an}中,對任意的n∈N*,若滿足an+an+1+an+2=s(s為常數(shù)),則稱該數(shù)列為3階等和數(shù)列,其中s為3階公和;若滿足an•an+1=t(t為常數(shù)),則稱該數(shù)列為2階等積數(shù)列,其中t為2階公積.已知數(shù)列{pn}為首項為1的3階等和數(shù)列,且滿足$\frac{p_3}{p_2}=\frac{p_2}{p_1}=2$;數(shù)列{qn}為首項為-1,公積為2的2階等積數(shù)列,設(shè)Sn為數(shù)列{pn•qn}的前n項和,則S2016=-7056.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}x+3y-3≤0\\ x-y+1≥0\\ y≥1\end{array}\right.$,則z=2|x|+y的取值范圍是( 。
A.[-1,3]B.[1,3]C.[-1,11]D.[-5,11]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.“a>1”是當(dāng)“0<x≤2時,2-2x≥logax成立”的( 。
A.必要不充分條件B.充分不必要條件
C.充要條件D.既非充分又非必要條件

查看答案和解析>>

同步練習(xí)冊答案