已知函數(shù)f(x)=
2x
x+1
與函數(shù)y=g(x)的圖象關(guān)于直線(xiàn)x=2對(duì)稱(chēng),
(1)求g(x)的表達(dá)式;
(2)若Φ(x+2)=
1
Φ(x)
,當(dāng)x∈(-2,0)時(shí),Φ(x)=g(x),求Φ(2005)的值.
考點(diǎn):函數(shù)的圖象與圖象變化,函數(shù)解析式的求解及常用方法,函數(shù)的值
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)根據(jù)函數(shù)的對(duì)稱(chēng)性即可求g(x)的表達(dá)式;
(2)根據(jù)條件判斷函數(shù)Φ(x)是周期為4的周期函數(shù),利用函數(shù)的周期性進(jìn)行求值即可.
解答: 解:(1)設(shè)P(x,y)是g(x)上的任意一點(diǎn),P關(guān)于x=2對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為(x′,y′),
x+x′
2
=2
y=y′
,即
x′=4-x
y′=y
,
∵y′=f(x′)=
2x′
x′+1
,
∴y=
2(4-x)
4-x+1
=
8-2x
5-x
=
2x-8
x-5
,
g(x)=
2x-8
x-5
(x≠5)

(2)∵Φ(x+2)=
1
Φ(x)

∴Φ(x+4)=
1
Φ(x+2)
=Φ(x),
即Φ(x)是周期為4的周期函數(shù),
則Φ(2005)=Φ(2004+1)=Φ(1)=Φ(-3)=
1
Φ(-3+2)
=
1
Φ(-1)
=
1
g(-1)
=
1
-2-8
-1-5
=
6
10
=
3
5
,
Φ(2005)=
3
5
點(diǎn)評(píng):本題主要考查函數(shù)解析式的求解以及函數(shù)值的計(jì)算,利用函數(shù)對(duì)稱(chēng)性是解決本題的關(guān)鍵.根據(jù)條件判斷函數(shù)的周期性是求值的突破.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某幾何體的三視圖如圖所示,則該幾何體的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在邊長(zhǎng)為1的正△ABC中,
BD
=
1
3
BA
,E是CA的中點(diǎn),則
CD
BE
=( 。
A、-
2
3
B、-
1
6
C、-
1
3
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角△ABC中,
AB
=(2,3),
AC
=(1,k),求實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Sn為數(shù)列{an}的前n項(xiàng)和,且有a1=1,Sn+1=an+1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿(mǎn)足bn=
n
4an
,其前n項(xiàng)和為 Tn,求證:
1
4
≤Tn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,若輸出值x∈(16,25),則輸入x值可以是(  )
A、0B、2C、4D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,AB=3,D是△ABC所在平面內(nèi)一動(dòng)點(diǎn)且滿(mǎn)足(
BD
+
CD
)⊥(
BD
-
CD
),(
CD
-
CA
)•
CB
=4,則|
AC
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)雙曲線(xiàn)
x2
a2
-
y2
b2
=1(a>0,b>0)的虛軸長(zhǎng)為2,焦距為2
3
,則雙曲線(xiàn)的漸近線(xiàn)方程為(  )
A、y=±
2
2
x
B、y=±
2
x
C、y=±
1
2
x
D、y=±2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a1=1,an=2an-1+2n,求an

查看答案和解析>>

同步練習(xí)冊(cè)答案