【題目】隨著智能手機的普及,使用手機上網(wǎng)成為了人們?nèi)粘I畹囊徊糠,很多消費者對手機流量的需求越來越大.長沙某通信公司為了更好地滿足消費者對流量的需求,準備推出一款流量包.該通信公司選了5個城市(總?cè)藬?shù)、經(jīng)濟發(fā)展情況、消費能力等方面比較接近)采用不同的定價方案作為試點,經(jīng)過一個月的統(tǒng)計,發(fā)現(xiàn)該流量包的定價:(單位:元/月)和購買人數(shù)(單位:萬人)的關(guān)系如表:
(1)根據(jù)表中的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(2)若該通信公司在一個類似于試點的城市中將這款流量包的價格定位25元/ 月,請用所求回歸方程預測長沙市一個月內(nèi)購買該流量包的人數(shù)能否超過20 萬人.
參考公式:,.
科目:高中數(shù)學 來源: 題型:
【題目】調(diào)查機構(gòu)對某高科技行業(yè)進行調(diào)查統(tǒng)計,得到該行業(yè)從業(yè)者學歷分布扇形圖和從事該行業(yè)崗位分布條形圖,如圖所示,判斷以下三種說法的正誤:①該高科技行業(yè)從業(yè)人員中學歷為博士的占一半以上;②該高科技行業(yè)中從事技術(shù)崗位的人數(shù)超過總數(shù)的30%;③該高科技行業(yè)中從事運營崗位的人員主要是本科生.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有一個關(guān)于平面圖形的命題:如圖,同一平面內(nèi)有兩個邊長都是2的正方形,其中一個的某頂點在另一個的中心,則這兩個正方形重疊部分的面積恒為______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知且
(1)求函數(shù)的定義域及其零點;
(2)若關(guān)于的方程在區(qū)間[0,1)內(nèi)有解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點是平行四邊形所在平面外一點,如果,,.(1)求證:是平面的法向量;
(2)求平行四邊形的面積.
【答案】(1)證明見解析;(2).
【解析】試題分析:
(1)由題意結(jié)合空間向量數(shù)量積的運算法則計算可得,.則,,結(jié)合線面垂直的判斷定理可得平面,即是平面的法向量.
(2)利用平面向量的坐標計算可得,,,則,,.
試題解析:
(1)∵,
.
∴,,又,∴平面,
∴是平面的法向量.
(2)∵ ,,
∴,
∴,
故, .
【題型】解答題
【結(jié)束】
19
【題目】(1)求圓心在直線上,且與直線相切于點的圓的方程;
(2)求與圓外切于點且半徑為的圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)將的方程化為普通方程,將的方程化為直角坐標方程;
(2)已知直線的參數(shù)方程為(,為參數(shù),且),與交于點,與交于點,且,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】剪紙藝術(shù)是最古老的中國民間藝術(shù)之一,作為一種鏤空藝術(shù),它能給人以視覺上以透空的感覺和藝術(shù)享受.在中國南北方的剪紙藝術(shù),通過一把剪刀、一張紙、就可以表達生活中的各種喜怒哀樂.如圖是一邊長為1的正方形剪紙圖案,中間黑色大圓與正方形的內(nèi)切圓共圓心,圓與圓之間是相切的,且中間黑色大圓的半徑是黑色小圓半徑的2倍,若在正方形圖案上隨機取一點,則該點取自白色區(qū)域的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲乙兩人進行跳棋比賽,約定每局勝者得1分,負者得0分.若其中的一方比對方多得2分或下滿5局時停止比賽.設(shè)甲在每局中獲勝的概率為,乙在每局中獲勝的概率為,且各局勝負相互獨立.
(1)求沒下滿5局甲就獲勝的概率;
(2)設(shè)比賽結(jié)束時已下局數(shù)為,求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2016年9月,第22屆魯臺經(jīng)貿(mào)洽談會在濰坊魯臺會展中心舉行,在會展期間某展銷商銷售一種商品,根據(jù)市場調(diào)查,每件商品售價(元)與銷量(萬件)之間的函數(shù)關(guān)系如圖所示,又知供貨價格與銷量成反比,比例系數(shù)為20.(注:每件產(chǎn)品利潤=售價-供貨價格)
(Ⅰ)求售價15元時的銷量及此時的供貨價格;
(Ⅱ)當銷售價格為多少時總利潤最大,并求出最大利潤.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com