【題目】數(shù)列中,若,則下列命題中真命題個(gè)數(shù)是( )
(1)若數(shù)列為常數(shù)數(shù)列,則;
(2)若,數(shù)列都是單調(diào)遞增數(shù)列;
(3)若,任取中的項(xiàng)構(gòu)成數(shù)列的子數(shù)(),則都是單調(diào)數(shù)列.
A.個(gè)B. 個(gè)C.個(gè)D.個(gè)
【答案】C
【解析】
對(duì)(1),由數(shù)列為常數(shù)數(shù)列,則,解方程可得的值;
對(duì)(2),由函數(shù),,求得導(dǎo)數(shù)和極值,可判斷單調(diào)性;
對(duì)(3),由,判斷奇偶性和單調(diào)性,結(jié)合正弦函數(shù)的單調(diào)性,即可得到結(jié)論.
數(shù)列中,若,,,
(1)若數(shù)列為常數(shù)數(shù)列,則,
解得或,故(1)不正確;
(2)若,,
,
由函數(shù),,
,
由,可得極值點(diǎn)唯一且為,
極值為,
由,可得,
則,即有.
由于,,
由正弦函數(shù)的單調(diào)性,可得,
則數(shù)列都是單調(diào)遞增數(shù)列,故(2)正確;
(3)若,任取中的9項(xiàng),,,,,
構(gòu)成數(shù)列的子數(shù)列,,2,,9,是單調(diào)遞增數(shù)列;
由,可得,為奇函數(shù);
當(dāng)時(shí),,時(shí),;
當(dāng)時(shí),;時(shí),,
運(yùn)用正弦函數(shù)的單調(diào)性可得或時(shí),數(shù)列單調(diào)遞增;
或時(shí),數(shù)列單調(diào)遞減.
所以數(shù)列都是單調(diào)數(shù)列,故(3)正確;
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),(為常數(shù)),.曲線在點(diǎn)處的切線與軸平行
(1)求的值;
(2)求的單調(diào)區(qū)間和最小值;
(3)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校在2012年的自主招生考試成績(jī)中隨機(jī)抽取名中學(xué)生的筆試成績(jī),按成績(jī)分組,得到的頻率分布表如表所示.
組號(hào) | 分組 | 頻數(shù) | 頻率 |
第1組 | 5 | ||
第2組 | ① | ||
第3組 | 30 | ② | |
第4組 | 20 | ||
第5組 | 10 |
(1)請(qǐng)先求出頻率分布表中位置的相應(yīng)數(shù)據(jù),再完成頻率分布直方圖;
(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績(jī)高的第組中用分層抽樣抽取名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試;
(3)在(2)的前提下,學(xué)校決定在名學(xué)生中隨機(jī)抽取名學(xué)生接受考官進(jìn)行面試,求:第組至少有一名學(xué)生被考官面試的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】五一勞動(dòng)節(jié)放假,某商場(chǎng)進(jìn)行一次大型抽獎(jiǎng)活動(dòng).在一個(gè)抽獎(jiǎng)盒中放有紅、橙、黃、綠、藍(lán)、紫的小球各2個(gè),分別對(duì)應(yīng)1分、2分、3分、4分、5分、6分.從袋中任取3個(gè)小球,按3個(gè)小球中最大得分的8倍計(jì)分,計(jì)分在20分到35分之間即為中獎(jiǎng).每個(gè)小球被取出的可能性都相等,用表示取出的3個(gè)小球中最大得分,求:
(1)取出的3個(gè)小球顏色互不相同的概率;
(2)隨機(jī)變量的概率分布和數(shù)學(xué)期望;
(3)求某人抽獎(jiǎng)一次,中獎(jiǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的右頂點(diǎn)為A,上頂點(diǎn)為B.已知橢圓的離心率為,.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于,兩點(diǎn),與直線交于點(diǎn)M,且點(diǎn)P,M均在第四象限.若的面積是面積的2倍,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(且),
(1)若,且函數(shù)的值域?yàn)?/span>,求的解析式;
(2)在(1)的條件下,當(dāng)時(shí),時(shí)單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(3)當(dāng),時(shí),若對(duì)于任意,不等式恒成立,求實(shí)數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域是且,,當(dāng)時(shí),.
(1)求證:是奇函數(shù);
(2)求在區(qū)間上的解析式;
(3)是否存在正整數(shù),使得當(dāng)時(shí),不等式有解?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小李大學(xué)畢業(yè)后選擇自主創(chuàng)業(yè),開發(fā)了一種新型電子產(chǎn)品.2019年9月1日投入市場(chǎng)銷售,在9月份的30天內(nèi),前20天每件售價(jià)(元)與時(shí)間(天,)滿足一次函數(shù)關(guān)系,其中第一天每件售價(jià)為63元,第10天每件售價(jià)為90元;后10天每件售價(jià)均為120元.已知日銷售量(件)與時(shí)間(天)之間的函數(shù)關(guān)系是.
(1)寫出該電子產(chǎn)品9月份每件售價(jià)(元)與時(shí)間(天)的函數(shù)關(guān)系式;
(2)9月份哪一天的日銷售金額最大?并求出最大日銷售金額.(日銷售金額=每件售價(jià)日銷售量).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果存在函數(shù)(為常數(shù)),使得對(duì)函數(shù)定義域內(nèi)任意都有成立,那么稱為函數(shù)的一個(gè)“線性覆蓋函數(shù)”.給出如下四個(gè)結(jié)論:
①函數(shù)存在“線性覆蓋函數(shù)”;
②對(duì)于給定的函數(shù),其“線性覆蓋函數(shù)”可能不存在,也可能有無數(shù)個(gè);
③為函數(shù)的一個(gè)“線性覆蓋函數(shù)”;
④若為函數(shù)的一個(gè)“線性覆蓋函數(shù)”,則
其中所有正確結(jié)論的序號(hào)是___________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com