分析 (Ⅰ)推導(dǎo)出ABCD為平行四邊形,AD∥BC,AD⊥BE,AD⊥AB,AD⊥PA,從而AD⊥平面PAB,由此能證明AD⊥PB.
(Ⅱ)利用等體積方法,求點(diǎn)C到平面PBD的距離.
解答 (Ⅰ)證明:在圖1中,因?yàn)锳B∥CD,AB=CD,
所以ABCD為平行四邊形,所以AD∥BC,
因?yàn)椤螧=90°,所以AD⊥BE,
當(dāng)三角形EDA沿AD折起時,AD⊥AB,AD⊥AE,
即:AD⊥AB,AD⊥PA,
又AB∩PA=A,所以AD⊥平面PAB,
又因?yàn)镻B?平面PAB,所以AD⊥PB.---------------------------------------------------(6分)
(Ⅱ)解:PA⊥平面ABCD,${S_{△BCD}}=\frac{1}{2}$,
∵$PD=BD=PB=\sqrt{2}$,∴${S_{△PBD}}=\frac{{\sqrt{3}}}{2}$,
∵PA=1,設(shè)點(diǎn)C到平面PBD的距離為h
∴VC-PBD=VP-BCD,∴$\frac{1}{3}•\frac{{\sqrt{3}}}{2}•h=\frac{1}{3}•\frac{1}{2}•1$,∴$h=\frac{{\sqrt{3}}}{3}$
答:點(diǎn)C到平面PBD的距離為$\frac{{\sqrt{3}}}{3}$.------------------------------------(12分)
點(diǎn)評 本題考查異面直線垂直的證明,考查點(diǎn)C到平面PBD的距離,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 即不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1+i | B. | -1-i | C. | -1+i | D. | 1-i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com