【題目】對于定義域為R的函數(shù)f(x),若滿足①f(0)=0;②當x∈R,且x≠0時,都有xf'(x)>0;③當x1≠x2 , 且f(x1)=f(x2)時,x1+x2<0,則稱f(x)為“偏對稱函數(shù)”. 現(xiàn)給出四個函數(shù):g(x)= ;φ(x)=ex﹣x﹣1.
則其中是“偏對稱函數(shù)”的函數(shù)個數(shù)為

【答案】2
【解析】經驗證,g(x),h(x),Φ(x),φ(x)都滿足條件①; xf′(x)>0 ,或 .即條件②等價于函數(shù)f(x)在區(qū)間(﹣∞,0)上單調遞減,在區(qū)間(0,+∞)上單調遞增.
而容易驗證g(x)是奇函數(shù),由及函數(shù)的性質可知g(x)在區(qū)間(﹣∞,0)和(0,+∞)上單調性相同,故g(x)不滿足條件②.
由復合函數(shù)的單調性法則知h(x)在區(qū)間(﹣∞,0)上單調遞減,顯然在(0,+∞)上單調遞增,故h(x)滿足條件②.
Φ′(x)=﹣3x2+3x,xΦ′(x)=﹣3x3+3x2=﹣3x2(x﹣1),當x>1時,xΦ′(x)<0,故Φ(x)不滿足條件②.
φ′(x)=ex﹣1,xφ′(x)=x(ex﹣1),滿足條件②.
故由條件②可排除g(x)和Φ(x);
由函數(shù)h(x)的單調性知:當x1≠x2 , 且h(x1)=h(x2)時,x1x2<0,不妨設x1<0<x2
則ln(﹣x1+1)=2x2 , 設F(x)=ln(x+1)﹣2x,x>0.則F′(x)= <0,F(xiàn)(x)在(0,+∞)上是減函數(shù),
所以F(x2)<F(0)=0,即ln(x2+1)<2x2 , 即ln(x2+1)<ln(﹣x1+1),所以x2+1<﹣x1+1,即x1+x2<0,故h(x)也滿足條件③,所以h(x)是“偏對稱函數(shù)”.
由φ(x)的單調性知當x1≠x2 , 且φ(x1)=φ(x2)時,x1x2<0,不妨設x1<0<x2
,﹣x2<0,φ(x1)﹣φ(﹣x2)=φ(x2)﹣φ(﹣x2)=
令F(x)=ex﹣ex﹣2x,F(xiàn)′(x)= ,當且僅當ex=ex即x=0時,“=”成立,
所以F(x)在[0,+∞)上是增函數(shù),所以F(x2)>F(0)=0,即φ(x1)﹣φ(﹣x2)>0,所以φ(x1)>φ(﹣x2),所以x1<﹣x2 , 所以x1+x2<0.所以φ(x)是“偏對稱函數(shù)”.
所以答案是:2
【考點精析】根據題目的已知條件,利用函數(shù)的值和利用導數(shù)研究函數(shù)的單調性的相關知識可以得到問題的答案,需要掌握函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調性法;一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】把函數(shù)的圖象沿軸向左平移個單位,縱坐標伸長到原來的2倍(橫坐標不變)后得到函數(shù)的圖象,對于函數(shù)有以下四個判斷:

①該函數(shù)的解析式為;;

②該函數(shù)圖象關于點對稱;

③該函數(shù)在[,上是增函數(shù);

④函數(shù)上的最小值為,則

其中,正確判斷的序號是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知等腰直角三角形的斜邊所在直線方程為,其中點在點上方,直角頂點的坐標為

(1)求邊上的高線所在直線的方程;

(2)求等腰直角三角形的外接圓的標準方程;

(3)分別求兩直角邊所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(Ⅰ)已知函數(shù)f(x)=|2x﹣3|﹣2|x|,若關于x不等式f(x)≤|a+2|+2a恒成立,求實數(shù)a的取值范圍; (Ⅱ)已知正數(shù)x,y,z滿足2x+y+z=1,求證

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某制造商月生產了一批乒乓球,隨機抽樣個進行檢查,測得每個球的直徑(單位:mm),將數(shù)據分組如下表

分組

頻數(shù)

頻率

10

20

50

20

合計

100

(1)請在上表中補充完成頻率分布表(結果保留兩位小數(shù)),并在上圖中畫出頻率分布直方圖;

(2)統(tǒng)計方法中,同一組數(shù)據常用該組區(qū)間的中點值(例如區(qū)間的中點值是)作為代表.據此估計這批乒乓球直徑的平均值(結果保留兩位小數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列四個命題:①命題“若,則”的逆否命題為假命題:

②命題“若,則”的否命題是“若,則”;

③若“”為真命題,“”為假命題,則為真命題,為假命題;

④函數(shù)有極值的充要條件是 .

其中正確的個數(shù)有( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=e2x(ax2+2x﹣1),a∈R.
(Ⅰ)當a=4時,求證:過點P(1,0)有三條直線與曲線y=f(x)相切;
(Ⅱ)當x≤0時,f(x)+1≥0,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù).

(1)若,證明: 上存在唯一零點;

(2)設函數(shù),( 表示中的較小值),若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)軸于兩點(不重合),交軸于. 三點.下列說法正確的是( )

圓心在直線上;

的取值范圍是;

半徑的最小值為;

存在定點,使得圓恒過點.

A. ①②③B. ①③④C. ②③D. ①④

查看答案和解析>>

同步練習冊答案