【題目】給出下列四個(gè)命題:①命題“若,則”的逆否命題為假命題:

②命題“若,則”的否命題是“若,則”;

③若“”為真命題,“”為假命題,則為真命題,為假命題;

④函數(shù)有極值的充要條件是 .

其中正確的個(gè)數(shù)有( )

A. B. C. D.

【答案】B

【解析】分析①根據(jù)原命題與逆否命題的等價(jià)性可判斷;②根據(jù)否命題的定義判斷;③根據(jù)“或命題”與“且命題”的性質(zhì)判斷;④根據(jù)有兩相異根的充要條件判斷.

詳解①因?yàn)槊},則為真命題,所以其逆否命題為真命題,①錯(cuò)

,則的否命題是,則”, ②正確;

③若為真命題,為假命題,則假,或假,③錯(cuò);

④求得,方程有兩個(gè)不同解的充要條件是 ,所以函數(shù)有極值的充要條件是,④正確,故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某學(xué)校的800名男生中隨機(jī)抽取50名測(cè)量其身高,被測(cè)學(xué)生身高全部介于之間,將測(cè)量結(jié)果按如下方式分組:第一組,第二組,…,第八組,如圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組的人數(shù)為4.

(1)請(qǐng)補(bǔ)全頻率分布直方圖并求第七組的頻率;

(2)估計(jì)該校的800名男生的身高的中位數(shù)以及身高在以上(含)的人數(shù);

(3)若從身高屬于第六組和第八組的所有男生中隨機(jī)抽取兩名男生,記他們的身高分別為,,事件,事件,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)對(duì)任意的x∈R,都有f(﹣x)+f(x)=﹣6,且當(dāng)x≥0時(shí),f(x)=2x﹣4,定義在R上的函數(shù)g(x)=a(x﹣a)(x+a+1),兩函數(shù)同時(shí)滿足:x∈R,都有f(x)<0或g(x)<0;x∈(﹣∞,﹣1),f(x)g(x)<0,則實(shí)數(shù)a的取值范圍為(
A.(﹣3,0)
B.
C.(﹣3,﹣1)
D.(﹣3,﹣1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校參加某項(xiàng)競賽僅有一個(gè)名額,結(jié)合平時(shí)訓(xùn)練成績,甲、乙兩名學(xué)生進(jìn)入最后選拔,學(xué)校為此設(shè)計(jì)了如下選拔方案:設(shè)計(jì)6道測(cè)試題,若這6道題中,甲能正確解答其中的4道,乙能正確解答每個(gè)題目的概率均為.假設(shè)甲、乙兩名學(xué)生解答每道測(cè)試題都相互獨(dú)立,互不影響,現(xiàn)甲、乙從這6道測(cè)試題中分別隨機(jī)抽取3題進(jìn)行解答.

(1)求甲、乙兩名學(xué)生共答對(duì)2道測(cè)試題的概率;

(2)從數(shù)學(xué)期望和方差的角度分析,應(yīng)選拔哪個(gè)學(xué)生代表學(xué)校參加競賽?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于定義域?yàn)镽的函數(shù)f(x),若滿足①f(0)=0;②當(dāng)x∈R,且x≠0時(shí),都有xf'(x)>0;③當(dāng)x1≠x2 , 且f(x1)=f(x2)時(shí),x1+x2<0,則稱f(x)為“偏對(duì)稱函數(shù)”. 現(xiàn)給出四個(gè)函數(shù):g(x)= ;φ(x)=ex﹣x﹣1.
則其中是“偏對(duì)稱函數(shù)”的函數(shù)個(gè)數(shù)為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓經(jīng)過,三點(diǎn).

(1)求圓的標(biāo)準(zhǔn)方程;

(2)若過點(diǎn)N 的直線被圓截得的弦AB的長為,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)當(dāng)時(shí),討論的單調(diào)性;

(2)設(shè),當(dāng)時(shí),若對(duì)任意,存在使,求實(shí)數(shù)取值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的短軸一個(gè)端點(diǎn)到右焦點(diǎn)F的距離為2,且過點(diǎn)
(1)求橢圓C的方程;
(2)設(shè)M,N為橢圓C上不同的兩點(diǎn),A,B分別為橢圓C上的左右頂點(diǎn),直線MN既不平行與坐標(biāo)軸,也不過橢圓C的右焦點(diǎn)F,若∠AFM=∠BFN,求證:直線MN過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,平面平面,四邊形為正方形,四邊形為梯形,且,

(Ⅰ)求證:平面

(Ⅱ)求證:平面;

(Ⅲ)在線段上是否存在點(diǎn),使得平面?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案