【題目】近年來(lái),人們對(duì)食品安全越來(lái)越重視,有機(jī)蔬菜的需求也越來(lái)越大,國(guó)家也制定出臺(tái)了一系列支持有機(jī)肥產(chǎn)業(yè)發(fā)展的優(yōu)惠政策,鼓勵(lì)和引導(dǎo)農(nóng)民增施有機(jī)肥,藏糧于地,藏糧于技.根據(jù)某種植基地對(duì)某種有機(jī)蔬菜產(chǎn)量與有機(jī)肥用量的統(tǒng)計(jì),每個(gè)有機(jī)蔬菜大棚產(chǎn)量的增加量(百斤)與使用有機(jī)肥料(千克)之間對(duì)應(yīng)數(shù)據(jù)如下表:

使用有機(jī)肥料(千克)

3

4

5

6

7

8

9

10

產(chǎn)量增加量 (百斤)

2.1

2.9

3.5

4.2

4.8

5.6

6.2

6.7

1)根據(jù)表中的數(shù)據(jù),試建立關(guān)于的線性回歸方程(精確到);

2 若種植基地每天早上7點(diǎn)將采摘的某有機(jī)蔬菜以每千克10元的價(jià)格銷售到某超市,超市以每千克15元的價(jià)格賣給顧客.已知該超市每天8點(diǎn)開(kāi)始營(yíng)業(yè),22點(diǎn)結(jié)束營(yíng)業(yè),超市規(guī)定:如果當(dāng)天16點(diǎn)前該有機(jī)蔬菜沒(méi)賣完,則以每千克5元的促銷價(jià)格賣給顧客(根據(jù)經(jīng)驗(yàn),當(dāng)天都能全部賣完).該超市統(tǒng)計(jì)了100天該有機(jī)蔬菜在每天的16點(diǎn)前的銷售量(單位:千克),如表:

每天16點(diǎn)前的

銷售量(單位:千克)

100

110

120

130

140

150

160

頻數(shù)

10

20

16

16

14

14

10

若以100天記錄的頻率作為每天16點(diǎn)前銷售量發(fā)生的概率,以該超市當(dāng)天銷售該有機(jī)蔬菜利潤(rùn)的期望值為決策依據(jù),說(shuō)明該超市選擇購(gòu)進(jìn)該有機(jī)蔬菜110千克還是120千克,能使獲得的利潤(rùn)更大?

附:回歸直線方程中的斜率和截距的最小二乘估計(jì)公式分別為: ,

參考數(shù)據(jù):

【答案】12)選擇購(gòu)進(jìn)該有機(jī)蔬菜120千克,能使得獲得的利潤(rùn)更大

【解析】

1)求出,結(jié)合題目所給數(shù)據(jù),代入回歸直線方程中的斜率和截距的最小二乘估計(jì)公式中,即可求出線性回歸方程;

(2)分別計(jì)算出購(gòu)進(jìn)該有機(jī)蔬菜110千克利潤(rùn)的數(shù)學(xué)期望和120千克利潤(rùn)的數(shù)學(xué)期望,進(jìn)行比較即可得到答案。

1,

因?yàn)?/span>,

所以

,

所以關(guān)于的線性回歸方程為.

2)若該超市一天購(gòu)進(jìn)110千克這種有機(jī)蔬菜, 若當(dāng)天的需求量為100千克時(shí),獲得的利潤(rùn)為:(元);若當(dāng)天的需求量大于等于110千克時(shí),獲得的利潤(rùn)為:(元)

為當(dāng)天的利潤(rùn)(單位:元),則的分布列為

450

550

數(shù)學(xué)期望是

若該超市一天購(gòu)進(jìn)120千克這種有機(jī)蔬菜, 若當(dāng)天的需求量為100千克時(shí),獲得的利潤(rùn)為:(元);若當(dāng)天的需求量為110千克時(shí),獲得的利潤(rùn)為:(元);若當(dāng)天的需求量大于或等于120千克時(shí),獲得的利潤(rùn)為:(元)

為當(dāng)天的利潤(rùn)(單位:元),則的分布列為

400

500

600

數(shù)學(xué)期望是

因?yàn)?/span>

所以 選擇購(gòu)進(jìn)該有機(jī)蔬菜120千克,能使得獲得的利潤(rùn)更大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓.

1)求過(guò)點(diǎn)的圓的切線方程;

2)若直線過(guò)點(diǎn)且被圓C截得的弦長(zhǎng)為,求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若,求曲線在點(diǎn)處的切線;

2)若函數(shù)在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)的取值范圍;

3)設(shè)函數(shù),若在上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)統(tǒng)計(jì),2017年國(guó)慶中秋假日期間,黔東南州共接待游客590.23萬(wàn)人次,實(shí)現(xiàn)旅游收入48.67億元,同比分別增長(zhǎng)44.57%、55.22%.旅游公司規(guī)定:若公司導(dǎo)游接待旅客,旅游年總收入不低于40(單位:百萬(wàn)元),則稱為優(yōu)秀導(dǎo)游.經(jīng)驗(yàn)表明,如果公司的優(yōu)秀導(dǎo)游率越高,則該公司的影響度越高.已知甲、乙兩家旅游公司各有導(dǎo)游100名,統(tǒng)計(jì)他們一年內(nèi)旅游總收入,分別得到甲公司的頻率分布直方圖和乙公司的頻數(shù)分布表如下:

分組

頻數(shù)

18

49

24

5

Ⅰ)求的值,并比較甲、乙兩家旅游公司,哪家的影響度高?

Ⅱ)若導(dǎo)游的獎(jiǎng)金(單位:萬(wàn)元),與其一年內(nèi)旅游總收入(單位:百萬(wàn)元)之間的關(guān)系為,求甲公司導(dǎo)游的年平均獎(jiǎng)金;

Ⅲ)從甲、乙兩家公司旅游收入在的總?cè)藬?shù)中,用分層抽樣的方法隨機(jī)抽取6人進(jìn)行表彰,其中有兩名導(dǎo)游代表旅游行業(yè)去參加座談,求參加座談的導(dǎo)游中有乙公司導(dǎo)游的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4—4:極坐標(biāo)與參數(shù)方程

在平面直角坐標(biāo)系中,將曲線 (為參數(shù)) 上任意一點(diǎn)經(jīng)過(guò)伸縮變換后得到曲線的圖形.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知直線

Ⅰ)求曲線和直線的普通方程;

Ⅱ)點(diǎn)P為曲線上的任意一點(diǎn),求點(diǎn)P到直線的距離的最大值及取得最大值時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018湖南(長(zhǎng)郡中學(xué)、株洲市第二中學(xué))、江西(九江一中)等十四校高三第一次聯(lián)考已知函數(shù)(其中為常數(shù), 為自然對(duì)數(shù)的底數(shù), ).

)若函數(shù)的極值點(diǎn)只有一個(gè),求實(shí)數(shù)的取值范圍;

)當(dāng)時(shí),若(其中)恒成立,求的最小值的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(I)求函數(shù)的最大值;

(II)當(dāng)時(shí),函數(shù)有最小值,記的最小值為,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠生產(chǎn)不同規(guī)格的一種產(chǎn)品,根據(jù)檢測(cè)標(biāo)準(zhǔn),其合格產(chǎn)品的質(zhì)量與尺寸xmm)之間近似滿足關(guān)系式b、c為大于0的常數(shù)).按照某項(xiàng)指標(biāo)測(cè)定,當(dāng)產(chǎn)品質(zhì)量與尺寸的比在區(qū)間內(nèi)時(shí)為優(yōu)等品.現(xiàn)隨機(jī)抽取6件合格產(chǎn)品,測(cè)得數(shù)據(jù)如下:

尺寸xmm

38

48

58

68

78

88

質(zhì)量y (g)

16.8

18.8

20.7

22.4

24

25.5

質(zhì)量與尺寸的比

0.442

0.392

0.357

0.329

0.308

0.290

Ⅰ)現(xiàn)從抽取的6件合格產(chǎn)品中再任選3件,記為取到優(yōu)等品的件數(shù),試求隨機(jī)變量的分布列和期望;

Ⅱ)根據(jù)測(cè)得數(shù)據(jù)作了初步處理,得相關(guān)統(tǒng)計(jì)量的值如下表:

75.3

24.6

18.3

101.4

。└鶕(jù)所給統(tǒng)計(jì)量,求y關(guān)于x的回歸方程

ⅱ)已知優(yōu)等品的收益(單位:千元)與的關(guān)系為,則當(dāng)優(yōu)等品的尺寸x為何值時(shí),收益的預(yù)報(bào)值最大?(精確到0.1)

附:對(duì)于樣本 ,其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面為直角梯形,,,為正三角形.

(1)若點(diǎn)是棱的中點(diǎn),求證:平面

(2)若平面⊥平面,在(1)的條件下,試求四棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案