17.用反證法證明命題“三角形的內(nèi)角中至少有一個(gè)角不大于60度”時(shí),應(yīng)假設(shè)“三角形的三角形的三個(gè)內(nèi)角都大于60°”(用文字作答).

分析 根據(jù)命題“三角形的內(nèi)角中至少有一個(gè)內(nèi)角不大于60°”的否定是:三角形的三個(gè)內(nèi)角都大于60°,由此得到答案.

解答 證明:用反證法證明命題:“三角形的內(nèi)角中至少有一個(gè)內(nèi)角不大于60°”時(shí),
應(yīng)假設(shè)命題的否定成立,而命題“三角形的內(nèi)角中至少有一個(gè)內(nèi)角不大于60°”的否定是:
三角形的三個(gè)內(nèi)角都大于60°,
故答案為:三角形的三個(gè)內(nèi)角都大于60°

點(diǎn)評(píng) 本題主要考查求一個(gè)命題的否定,用反證法證明數(shù)學(xué)命題,把要證的結(jié)論進(jìn)行否定,得到要證的結(jié)論的反面,是解題的突破口,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)集合U={1,2,3,4,5,6,7,8},A={1,2,3},B={3,5},則(∁UA)∩B=(  )
A.{1,2,3,4}B.{3,5}C.{5}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)集合A={x|x-1>1},B={x|x<3},則A∩B={x|2<x<3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知曲線C的方程為F(x,y)=0,集合T={(x,y)|F(x,y)=0},若對(duì)于任意的(x1,y1)∈T,都存在(x2,y2)∈T,使得x1x2+y1y2=0成立,則稱曲線C為$\sum_{\;}^{\;}$曲線,下列方程所表示的曲線中,是$\sum_{\;}^{\;}$曲線的有①③⑤(寫出所有$\sum_{\;}^{\;}$曲線的序號(hào))
①2x2+y2=1;②x2-y2=1;③y2=2x;④|x|-|y|=1;⑤(2x-y+1)(|x-1|+|y-2|)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在四棱錐P-ABCD中,底面是邊長(zhǎng)為2的正方形,PA⊥底面ABCD,E為BC的中點(diǎn),PC與平面PAD所成的角為arctan$\frac{\sqrt{2}}{2}$.
(1)求證:CD⊥PD;
(2)求異面直線AE與PD所成的角的大。ńY(jié)果用反三角函數(shù)表示);
(3)若直線PE、PB與平面PCD所成角分別為α、β,求$\frac{sinα}{sinβ}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.對(duì)于復(fù)數(shù)z1=m+i,z2=m+(m-2)i(i為虛數(shù)單位,m為實(shí)數(shù)).
(1)若z2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于第四象限,求m的取值范圍;
(2)若z1,z2滿足z2=z1•ni,求實(shí)數(shù)m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=sin(2x-$\frac{π}{6}$)的圖象C1向左平移$\frac{π}{4}$個(gè)單位得圖象C2,則C2對(duì)應(yīng)的函數(shù)g(x)的解析式為y=sin(2x+$\frac{π}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知△ABC的重心為O,且AB=5,BC=2$\sqrt{3}$,AC=3,則$\overrightarrow{AO}$•$\overrightarrow{BC}$=-$\frac{16}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=xlnx-3x+8.
(1)求函數(shù)y=f(x)在[e,e3](e是自然對(duì)數(shù)的底數(shù))的值域;
(2)設(shè)0<a<b,求證:$0<2f(a)+f(b)-3f({\frac{2a+b}{3}})<({b-a})ln3$.

查看答案和解析>>

同步練習(xí)冊(cè)答案