A. | 7 | B. | 1 | C. | -7 | D. | -1 |
分析 作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的∯知識,通過平移即可求z的最小值.
解答 解:作出不等式對應(yīng)的平面區(qū)域,
由z=x+2y,得y=-$\frac{1}{2}x+\frac{z}{2}$,
平移直線y=-$\frac{1}{2}x+\frac{z}{2}$,由圖象可知當(dāng)直線y=-$\frac{1}{2}x+\frac{z}{2}$經(jīng)過點A時,
直線y=-$\frac{1}{2}x+\frac{z}{2}$的截距最小,此時z最小.
由$\left\{\begin{array}{l}{x=1}\\{x+y=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=-1}\end{array}\right.$,即A(1,-1).
此時z的最小值為z=1+2×(-1)=-1,
故選:D.
點評 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=f(|x|) | B. | y=-|f(x)| | C. | y=-f(-|x|) | D. | y=f(-|x|) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$+π | B. | $\frac{5}{2}$-π | C. | $\frac{8}{3}$-π | D. | -$\frac{4}{3}$+π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com