A. | -2<a<2 | B. | $\sqrt{3}<a≤2$ | C. | $-\sqrt{3}<a≤2$ | D. | $-\sqrt{3}≤a≤2$ |
分析 關(guān)于x的方程x2-ax+a2-3=0至少有一個(gè)正根?(1)當(dāng)方程只有一個(gè)根,且為正根,(2)當(dāng)方程有兩個(gè)根①方程的兩個(gè)根中只有一個(gè)正根,一個(gè)復(fù)根或零根,②若方程有兩個(gè)正根,結(jié)合二次方程的根的情況可求.
解答 解:∵△=a2-4(a2-3)=12-3a2
(1)當(dāng)方程只有一個(gè)根時(shí),△=0,此時(shí)a=±2,
若a=2,此時(shí)方程x2-2x+1=0的根x=1符合條件,
若a=-2,此時(shí)方程x2+2x+1=0的根x=-1不符舍去;
(2)當(dāng)方程有兩個(gè)根時(shí),△>0可得-2<a<2
①若方程的兩個(gè)根中只有一個(gè)正根,一個(gè)負(fù)根或零根,則有a2-3≤0,解可得-$\sqrt{3}$≤a≤$\sqrt{3}$,
a=-$\sqrt{3}$時(shí),方程x2-ax+a2-3=0沒有正根,舍去,
故-$\sqrt{3}$<a≤$\sqrt{3}$符合條件
②若方程有兩個(gè)正根,則 $\left\{\begin{array}{l}{a>0}\\{{a}^{2}-3>0}\end{array}\right.$,解可得a>$\sqrt{3}$,
綜上可得,-$\sqrt{3}$<a≤2
故選:C.
點(diǎn)評(píng) 本題考查一元二次方程的根的分布與系數(shù)的關(guān)系,考查分類討論思想,轉(zhuǎn)化思想,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{20}{9}$ | B. | 1 | C. | 2 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{2}{5}$+$\frac{4}{5}$i | B. | $\frac{2}{5}$+$\frac{4}{5}$i | C. | $\frac{2}{5}$-$\frac{4}{5}$i | D. | -$\frac{2}{5}$-$\frac{4}{5}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com