在正方體ABCD-A1B1C1D1中,E為AB的中點,F(xiàn)為AA1的中點,求證:CE,D1F,DA三線共點.
考點:平面的基本性質(zhì)及推論
專題:空間位置關(guān)系與距離
分析:延長D1F、DA交于P,連結(jié)EP,由已知條件得△PAE≌△PAF,從而得到∠PEA+∠AEC=180°,由此能證明CE,D1F,DA三線共點于P.
解答: 解:延長D1F、DA交于P,連結(jié)EP
∵AE=AF,PA=PA,∠PAE=∠PAF=90°,
∴△PAE≌△PAF,
∴∠PFA=∠PEA,
∵∠PFA=∠PD1D,∠PD1D=∠DCE(∠A1D1F=∠BCE),
∴∠PEA=∠DCE,
又∵∠DCE+∠AEC=180°,
∴∠PEA+∠AEC=180°,
即點P、E、C共線,
∴CE,D1F,DA三線共點于P.
點評:本題考查三線共點的證明,是中檔題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知動圓過定點P(2,0),且在y軸上截得弦長為4.
(1)求動圓圓心的軌跡Q的方程;
(2)已知點E(m,0)為一個定點,過E作斜率分別為k1、k2的兩條直線交軌跡Q于點A、B、C、D四點,且M、N分別是線段AB、CD的中點,若k1+k2=1,求證:直線MN過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3-x2+ax
(1)a=-1,求f(x)在[0,2]的值域;   
(2)f(x)在R上恒增,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對的邊分別是a,b,c.已知bsinA=3csinB,△ABC面積為
5
2
,cosB=
2
3

(1)求b的值;
(2)求cos(2B-A)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a為常數(shù),求數(shù)列a,2a2,3a2,…,nan的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C經(jīng)過點A(-4,0),B(0,4),且圓心在直線y=x上,又直線l:y=kx+2與圓C相交于P,Q兩點.
(Ⅰ)求圓C的方程;
(Ⅱ)若
OP
OQ
=-8,求實數(shù)k的值;
(Ⅲ)過點(0,2)作直線l1與l垂直,且直線l1與圓C交于M,N兩點,求四邊形PMQN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(2x+i)i=-1+2i(x∈R,i為虛數(shù)單位),則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求值:(
81
16
 -
3
4
=
 
,log2(47×25)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-alnx的定義域是D,有下列四個命題:
①對于?a∈(-∞,0),函數(shù)f(x)在D上是單調(diào)增函數(shù);
②對于?a∈(0,+∞),函數(shù)f(x)存在最小值;
③?a∈(-∞,0),使得對于x∈D,都有f(x)>0成立;
④?a∈(0,+∞),使得函數(shù)f(x)有兩個零點.
其中是真命題的為
 
.(填所有符合要求的序號)

查看答案和解析>>

同步練習(xí)冊答案