(1)已知不等式x2+bx+c>0的解集是{x|x<-1或x>2},求b,c的值;
(2)若x<-1,則x為何值時(shí)y=
x2+x+1
x+1
有最大值,最大值為多少?
考點(diǎn):一元二次不等式的解法,基本不等式
專題:函數(shù)的性質(zhì)及應(yīng)用,不等式的解法及應(yīng)用
分析:(1)根據(jù)題意,結(jié)合根與系數(shù)的關(guān)系,求出b、c的值;
(2)化簡y的解析式,利用基本不等式,求出y的最大值ymax
解答: 解:(1)根據(jù)題意,方程x2+bx+c=0的兩根是-1和2;
由根與系數(shù)的關(guān)系,得
-b=-1+2
c=-1×2
,
解得b=-1,c=-2;
(2)∵y=
x2+x+1
x+1
=
(x+1)2-x-1+1
x+1
=(x+1)+
1
x+1
-1,
當(dāng)x<-1時(shí),x+1<0,∴-(x+1)>0,
∴-(x+1)+
1
-(x+1)
≥2,∴(x+1)+
1
x+1
≤-2,
當(dāng)且僅當(dāng)x=-2時(shí),“=”成立;
∴當(dāng)x=-2時(shí),y取得最大值ymax=-2-1=-3.
點(diǎn)評:本題考查了一元二次不等式與對應(yīng)方程的關(guān)系以及基本不等式的應(yīng)用問題,解題時(shí)應(yīng)結(jié)合根與系數(shù)的關(guān)系,利用轉(zhuǎn)化思想,進(jìn)行解答,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)雙曲線
x2
16
-
y2
9
=1上一點(diǎn)P,F(xiàn)1,F(xiàn)2是焦點(diǎn),若|PF1|=10,則|PF2|等于(  )
A、2B、2或18C、18D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知△AOB,∠AOB=
π
2
,∠BAO=
π
6
,AB=4,D為線段AB的中點(diǎn).若△AOC是△AOB繞直線AO旋轉(zhuǎn)而成的.記OB繞O旋轉(zhuǎn)所成角∠BOC為θ.
(1)當(dāng)平面COD⊥平面AOB時(shí),證明:OC⊥OB;
(2)若θ∈[
π
2
,
3
],求三棱錐C-AOB的體積V的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sinxcosx+sin2x-
3
2
,將函數(shù)f(x)的圖象向左平移
π
6
個(gè)單位,得到函數(shù)g(x)的圖象,設(shè)△ABC得三個(gè)角A,B,C的對邊分別是a,b,c
(1)若f(C)=0,c=
6
,2sinA=sinB,求a,b的值;
(2)若g(B)=0,且
m
=(cosA,cosB),
n
=(1,sinA-cosAtanB),求
m
n
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機(jī)抽樣方法從該地區(qū)調(diào)查了500位老人,結(jié)果如下:
是否需要志愿者
需要5025
不需要200225
(Ⅰ)估計(jì)該地區(qū)老年人中,需要志愿提供幫助的老年人的比例;
(Ⅱ)能否在犯錯(cuò)誤的概率不超過1%的前提下認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?
(Ⅲ)根據(jù)(Ⅱ)的結(jié)論,能否提出更好的調(diào)查辦法來估計(jì)該地區(qū)的老年人中,需要志愿者提供幫助的老年人的比例?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是三棱柱ABC-A1B1C1的三視圖,正(主)視圖和俯視圖都是矩形,側(cè)(左)視圖為等邊三角形,D為AC的中點(diǎn).
(1)求證:AB1∥平面BDC1;
(2)設(shè)AB1垂直于BC1,且BC=2,求三棱柱ABC-A1B1C1的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是公差不為零的等差數(shù)列,Sn為其前n項(xiàng)和,滿足a22+a32=a42+a52,S7=7.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,an+1=1-
1
4an
,其中n∈N*
(1)設(shè)bn=
2
2an-1
,求證:數(shù)列{bn}是等差數(shù)列;
(2)若cn=6n+(-1)n-1λ•2 bn是否存在λ,使得對任意n∈N+,都有cn+1>cn,若存在,求出λ的取值范圍;若不存在,說明理由;
(3)證明::對一切正整數(shù)n,有
1
b1(b1+1)
+
1
b2(b2+1)
+…+
1
bn(bn+1)
13
42

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在含有3件次品的5件產(chǎn)品中,任取2件,試求:
(Ⅰ)取到的次品數(shù)X的分布列;
(Ⅱ)至多有1件次品的概率.

查看答案和解析>>

同步練習(xí)冊答案