【題目】已知函數(shù) 為常數(shù)),函數(shù)為自然對數(shù)的底).

(1)討論函數(shù)的極值點的個數(shù);

(2)若不等式恒成立,求實數(shù)的取值范圍.

【答案】(1)詳見解析(2)

【解析】試題(1)求得,分三種情況討論,分別研究函數(shù)的單調性進而可得函數(shù)極值點的個數(shù);(2)不等式恒成立,等價于只需研究函數(shù)的最小值不小于零即可.

試題解析:(1) ,

得: ,記,則,

,且時, 時,

所以當時, 取得最大值,又,

(i)當時, 恒成立,函數(shù)無極值點;

(ii)當時, 有兩個解 ,且時, , 時, , 時, ,所以函數(shù)有兩個極值點;

(iii)當時,方程有一個解,且, 時, ,所以函數(shù)有一個極值點;

(2)記 ,

, ,

又當, 時, ,

, 在區(qū)間上單調遞增,

所以恒成立,即恒成立,

綜上實數(shù)的取值范圍是.

【方法點晴】本題主要考查利用導數(shù)求函數(shù)的最值以及不等式恒成立問題,屬于難題.不等式恒成立問題常見方法:① 分離參數(shù)恒成立(可)或恒成立(即可);② 數(shù)形結合(圖象在 上方即可);③ 討論最值恒成立;④ 討論參數(shù).本題是利用方法 ③ 求得的范圍的.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的左焦點為且離心率為,為橢圓上任意一點,的取值范圍為.

(1)求橢圓的方程;

(2)如圖,設圓是圓心在橢圓上且半徑為的動圓,過原點作圓的兩條切線,分別交橢圓于兩點.是否存在使得直線與直線的斜率之積為定值?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若的極大值點,求的值;

2)若上只有一個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的焦距與短軸長相等,長軸長為,設過右焦點F傾斜角為的直線交橢圓MA、B兩點.

(1)求橢圓M的方程;

(2)求證:

(3)設過右焦點F且與直線AB垂直的直線交橢圓MC、D,求四邊形ABCD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C的極坐標方程為0),過點的直線的參數(shù)方程為t為參數(shù)),直線與曲線C相交于A,B兩點.

)寫出曲線C的直角坐標方程和直線的普通方程;

)若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),且曲線在點處的切線與直線垂直.

(1)求函數(shù)的單調區(qū)間;

(2)求證:時,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】每個國家對退休年齡都有不一樣的規(guī)定,從2018年開始,我國關于延遲退休的話題一直在網上熱議,為了了解市民對延遲退休的態(tài)度,現(xiàn)從某地市民中隨機選取100人進行調查,調查情況如下表:

年齡段(單位:歲)

被調查的人數(shù)

贊成的人數(shù)

1)從贊成延遲退休的人中任選1人,此人年齡在的概率為,求出表格中的值;

2)若從年齡在的參與調查的市民中按照是否贊成延遲退休進行分層抽樣,從中抽取10人參與某項調查,然后再從這10人中隨機抽取4人參加座談會,記這4人中贊成延遲退休的人數(shù)為,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱錐中,,,.

1)求證:

2)若二面角的大小為時,求的中線與面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地實施鄉(xiāng)村振興戰(zhàn)略,對農副產品進行深加工以提高產品附加值,已知某農產品成本為每件3元,加工后的試營銷期間,對該產品的價格與銷售量統(tǒng)計得到如下數(shù)據(jù):

單價x(元)

6

6.2

6.4

6.6

6.8

7

銷量y(萬件)

80

74

73

70

65

58

數(shù)據(jù)顯示單價x與對應的銷量y滿足線性相關關系.

1)求銷量y(件)關于單價x(元)的線性回歸方程;

2)根據(jù)銷量y關于單價x的線性回歸方程,要使加工后收益P最大,應將單價定為多少元?(產品收益=銷售收入-成本).

參考公式:==

查看答案和解析>>

同步練習冊答案