分析 (1)把已知的數(shù)列遞推式變形,得到${a}_{n+1}=\frac{1}{2-{a}_{n}}$,然后代入$\frac{1}{{a}_{n+1}-1}-\frac{1}{{a}_{n}-1}$即可得到答案;
(2)由(1)中的等差數(shù)列求出數(shù)列{an}的通項公式,代入bn=$\frac{{{a_{n+1}}}}{a_n}$-1并整理,然后利用裂項相消法求數(shù)列{bn}的前n項和后得答案.
解答 證明:(1)由$\frac{{{a_{n+1}}}}{{{a_{n+1}}-1}}$-$\frac{1}{{{a_n}-1}}$=0,得$\frac{{{a_{n+1}}}}{{{a_{n+1}}-1}}$=$\frac{1}{{{a_n}-1}}$,
∴$\frac{{a}_{n+1}-1}{{a}_{n+1}}={a}_{n}-1$,即$1-\frac{1}{{a}_{n+1}}={a}_{n}-1$,∴${a}_{n+1}=\frac{1}{2-{a}_{n}}$.
則$\frac{1}{{a}_{n+1}-1}-\frac{1}{{a}_{n}-1}=\frac{1}{\frac{1}{2-{a}_{n}}-1}-\frac{1}{{a}_{n}-1}$=$\frac{1-{a}_{n}}{{a}_{n}-1}=-1$.
∴數(shù)列{$\frac{1}{{{a_n}-1}}$}是以-1為公差的等差數(shù)列;
(2)由數(shù)列{$\frac{1}{{{a_n}-1}}$}是以-1為公差的等差數(shù)列,且$\frac{1}{{a}_{1}-1}=\frac{1}{\frac{1}{2}-1}=-2$,
∴$\frac{1}{{a}_{n}-1}=-2-(n-1)=-(n+1)$,則${a}_{n}=\frac{n}{n+1}$.
bn=$\frac{{{a_{n+1}}}}{a_n}$-1=$\frac{\frac{n+1}{n+2}}{\frac{n}{n+1}}-1=\frac{1}{n(n+2)}=\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$.
Sn=b1+b2+…+bn=$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{n-1}-\frac{1}{n+1}+\frac{1}{n}-\frac{1}{n+2})$
=$\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$=$\frac{3}{4}-\frac{1}{2(n+1)}-\frac{1}{2(n+2)}<\frac{3}{4}$.
點評 本題考查了數(shù)列遞推式,考查了等差關(guān)系的確定,訓(xùn)練了裂項相消法求數(shù)列的和,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com