7.已知A(-1,1)、B(x-1,2x),若向量$\overrightarrow{OA}$與$\overrightarrow{OB}$(O為坐標原點)的夾角為銳角,則實數(shù)x的取值范圍是(  )
A.(-1,$\frac{1}{3}$)∪($\frac{1}{3}$,+∞)B.(-1,+∞)C.(-1,3)∪(3,+∞)D.(-∞,-1)

分析 由條件利用兩個向量的夾角公式,兩個向量共線的性質(zhì),可得1-x+2x>0,且 $\frac{x-1}{-1}$≠$\frac{2x}{1}$,由此求得x的范圍.

解答 解:若向量$\overrightarrow{OA}$與$\overrightarrow{OB}$(O為坐標原點)的夾角為銳角,則$\overrightarrow{OA}•\overrightarrow{OB}$>0 且向量$\overrightarrow{OA}$與$\overrightarrow{OB}$不共線,
∴1-x+2x>0,且 $\frac{x-1}{-1}$≠$\frac{2x}{1}$,
求得x>-1,且 x≠$\frac{1}{3}$,
故選:A.

點評 本題主要考查兩個向量的夾角公式,兩個向量共線的性質(zhì),屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

12.已知$\overrightarrow{m}$=(2cosA,1),$\overrightarrow{n}$=(1,(sin(A+$\frac{π}{6}$)),且$\overrightarrow{m}$∥$\overrightarrow{n}$,在△ABC中,內(nèi)角A,B,C對邊分別為a,b,c,a=2$\sqrt{3}$,c=4
(Ⅰ)求A值;
(Ⅱ)求b和△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.命題“若a>0,則二元一次不等式x+ay-1≥0表示直線x+ay-1=0的右上方區(qū)域(包含邊界)”的條件p:“a>0”,結(jié)論q:“二元一次不等式x+ay-1≥0表示直線x+ay-1=0的右上方區(qū)域(包含邊界)”,它是真命題(填“真”或“假”).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知i是虛數(shù)單位,則復數(shù)$\frac{1-3i}{1+i}$=(  )
A.-1-2iB.-1+2iC.2+iD.2-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知不等式組$\left\{\begin{array}{l}{2x-y+4≥0}\\{x+y-3≤0}\\{y≥0}\end{array}\right.$,構(gòu)成平面區(qū)域Ω(其中x,y是變量),則目標函數(shù)z=3x+6y的最小值為( 。
A.-3B.3C.-6D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知f(x)=$\left\{\begin{array}{l}{3-2x,x≥-1}\\{x+6,x<-1}\end{array}\right.$,若f(x)=3,則x=0或-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知在直角坐標系xOy中,圓錐曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=2cosθ\\ y=\sqrt{3}sinθ\end{array}\right.$(θ為參數(shù)),定點$A({0,-\sqrt{3}})$,F(xiàn)1,F(xiàn)2是圓錐曲線C的左、右焦點.
(1)以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求經(jīng)過點F1且平行于直線AF2的直線l的極坐標方程;
(2)設(1)中直線l與圓錐曲線C交于M,N兩點,求$\overrightarrow{{F}_{1}M}•\overrightarrow{{F}_{1}N}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.設集合A={-1,0,3},B={2a+1},A∩B={3},則實數(shù)a的值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知數(shù)列滿足an=3an-1+2,且a1=2,則an=3n-1.

查看答案和解析>>

同步練習冊答案