17.已知數(shù)列滿足an=3an-1+2,且a1=2,則an=3n-1.

分析 把數(shù)列遞推式變形,可得數(shù)列{an+1}構(gòu)成以3為首項,以3為公比的等比數(shù)列,求出等比數(shù)列的通項公式后可得an

解答 解:由an=3an-1+2,得
an+1=3(an-1+1),
∵a1+1=3≠0,
∴$\frac{{a}_{n}+1}{{a}_{n-1}+1}$=3.
則數(shù)列{an+1}構(gòu)成以3為首項,以3為公比的等比數(shù)列,
∴${a}_{n}+1=3•{3}^{n-1}={3}^{n}$,
則${a}_{n}={3}^{n}-1$.
故答案為:3n-1.

點評 本題考查數(shù)列遞推式,考查了等比關(guān)系的確定,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知A(-1,1)、B(x-1,2x),若向量$\overrightarrow{OA}$與$\overrightarrow{OB}$(O為坐標(biāo)原點)的夾角為銳角,則實數(shù)x的取值范圍是(  )
A.(-1,$\frac{1}{3}$)∪($\frac{1}{3}$,+∞)B.(-1,+∞)C.(-1,3)∪(3,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知f(x)是定義在R上的偶函數(shù),對x∈R都有f(x+6)=f(x)+f(3)成立,若f(0)=1,則f(2016)的值為  ( 。
A.0B.1C.2015D.2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知遞增等比數(shù)列{an},滿足a1=1,且a2a4-2a3a5+a4a6=36.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=log3an+$\frac{1}{2}$,求數(shù)列{an2•bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.拋物線x2=2y上的點到直線x-2y-4=0的距離的最小值是(  )
A.$\frac{\sqrt{5}}{4}$B.$\frac{2\sqrt{5}}{5}$C.$\frac{3\sqrt{5}}{4}$D.$\frac{3\sqrt{5}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若x,y滿足約束條件$\left\{\begin{array}{l}{x-y≤0}\\{x+y≥0}\\{x+3y-3≤0}\end{array}\right.$,則z=2x-y的最大值為$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖1,∠ACB=45°,BC=3,過動點A作AD⊥BC,垂足D在線段BC上且異于點B,連接AB,沿AD將△ABD折起,使∠BDC=90°(如圖2所示).記 BD=x,V(x)為三棱錐A-BCD的體積.

(1)求V(x)的表達(dá)式;
(2)設(shè)函數(shù)$f(x)=\frac{3}{x}V(x)+2x$,當(dāng)x為何值時,f(x)取得最小值,并求出該最小值;
(3)當(dāng)f(x)取得最小值時,設(shè)點E,M分別為棱BC,AC的中點,試在棱CD上確定一點N,使得EN⊥BM,并求EN與平面BMN所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知PA垂直于正方形ABCD所在平面,M,N分別是AB,PC的中點,并且PA=AD=1,求$\overrightarrow{MN}$,$\overrightarrow{DC}$的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知z是復(fù)數(shù),z+2i和$\frac{z}{2-i}$均為實數(shù)(i為虛數(shù)單位).
(Ⅰ)求復(fù)數(shù)z;
(Ⅱ)求$\frac{z}{1+i}$的模.

查看答案和解析>>

同步練習(xí)冊答案