【題目】如圖所示,將平面直角坐標(biāo)系的格點(diǎn)(橫、縱坐標(biāo)均為整數(shù)的點(diǎn))按如下規(guī)則標(biāo)上數(shù)字標(biāo)簽:原點(diǎn)處標(biāo)數(shù)字,點(diǎn)處標(biāo)數(shù)字,點(diǎn)處標(biāo)數(shù)字,點(diǎn)處標(biāo)數(shù)字,點(diǎn)處標(biāo)數(shù)字,點(diǎn)處標(biāo)數(shù)字,點(diǎn)處標(biāo)數(shù)字,點(diǎn)處標(biāo)數(shù)字,…以此類推:記格點(diǎn)坐標(biāo)為的點(diǎn)(均為正整數(shù))處所標(biāo)的數(shù)字為,若,則 .
【答案】
【解析】
試題從橫軸上的點(diǎn)開始點(diǎn)開始計數(shù),從開始計數(shù)第一周共個格點(diǎn),除了四個頂點(diǎn)外每一行第一列各有一個格點(diǎn),外加一個延伸點(diǎn),第二周從開始計,除了四個頂點(diǎn)的四個格點(diǎn)外,每一行每一列有三個格點(diǎn),外加一個延伸點(diǎn)共個,拐彎向下到達(dá)橫軸前的格點(diǎn)補(bǔ)開始點(diǎn)的上面以補(bǔ)足起始點(diǎn)所在列的個數(shù),設(shè)周數(shù)為,由此其規(guī)律是后一周是前一周的格點(diǎn)數(shù)加上,各周的點(diǎn)數(shù)和為,每一行(或列)除了端點(diǎn)外的點(diǎn)數(shù)與周數(shù)的關(guān)系是,由于,,∴當(dāng)時,.故答案為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,滿足Sn=2an-1(n∈N*),數(shù)列{bn}滿足nbn+1-(n+1)bn=n(n+1)(n∈N*),且b1=1.
(1)證明數(shù)列{}為等差數(shù)列,并求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)若cn=(-1)n-1,求數(shù)列{cn}的前n項(xiàng)和T2n;
(3)若dn=an,數(shù)列{dn}的前n項(xiàng)和為Dn,對任意的n∈N*,都有Dn≤nSn-a,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位為了解其后勤部門的服務(wù)情況,隨機(jī)訪問了40名其他部門的員工,根據(jù)這40名員工對后勤部門的評分情況,繪制了頻率分布直方圖如圖所示,其中樣本數(shù)據(jù)分組區(qū)間為,,,,,.
(1)求的值;
(2)估計該單位其他部門的員工對后勤部門的評分的中位數(shù);
(3)以評分在的受訪者中,隨機(jī)抽取2人,求此2人中至少有1人對后勤部門評分在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
該興趣小組確定的研究方案是:先用2、3、4、5月的4組數(shù)據(jù)求線性回歸方程,再用1月和6月的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)請根據(jù)2、3、4、5月的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
(參考公式: ,)
參考數(shù)據(jù):11×25+13×29+12×26+8×16=1092,112+132+122+82=498.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(α)=.
(1)化簡f(α);
(2)若f(α)=,且<α<,求cosα-sinα的值;
(3)若α=-,求f(α)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過市場調(diào)查,得到某種產(chǎn)品的資金投入x(單位:萬元)與獲得的利潤y(單位:萬元)的數(shù)據(jù),如表所示:
資金投入x | 2 | 3 | 4 | 5 | 6 |
利潤y | 2 | 3 | 5 | 6 | 9 |
(1)畫出數(shù)據(jù)對應(yīng)的散點(diǎn)圖;
(2)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求線性回歸直線方程;
(3)現(xiàn)投入資金10萬元,求獲得利潤的估計值為多少萬元?
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《周髀算經(jīng)》 是我國古代的天文學(xué)和數(shù)學(xué)著作。其中一個問題的大意為:一年有二十四個節(jié)氣(如圖),每個節(jié)氣晷長損益相同(即物體在太陽的照射下影子長度的增加量和減少量相同).若冬至晷長一丈三尺五寸,夏至晷長一尺五寸(注:ー丈等于十尺,一尺等于十寸),則立冬節(jié)氣的晷長為( )
A. 九尺五寸 B. 一丈五寸 C. 一丈一尺五寸 D. 一丈六尺五寸
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),或,,.
從以下兩個命題中任選一個進(jìn)行證明:
當(dāng)時函數(shù)恰有一個零點(diǎn);
當(dāng)時函數(shù)恰有一個零點(diǎn);
如圖所示當(dāng)時如,與的圖象“好像”只有一個交點(diǎn),但實(shí)際上這兩個函數(shù)有兩個交點(diǎn),請證明:當(dāng)時,與兩個交點(diǎn).
若方程恰有4個實(shí)數(shù)根,請結(jié)合的研究,指出實(shí)數(shù)k的取值范圍不用證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面上有一點(diǎn)列、、、、,對每個正整數(shù),點(diǎn)位于函數(shù)的圖像上,且點(diǎn)、點(diǎn)與點(diǎn)構(gòu)成一個以為頂角頂點(diǎn)的等腰三角形;
(1)求點(diǎn)的縱坐標(biāo)的表達(dá)式;
(2)若對每個自然數(shù),以、、為邊長能構(gòu)成一個三角形,求的取值范圍;
(3)設(shè),若。2)中確定的范圍內(nèi)的最小整數(shù),問數(shù)列的最大項(xiàng)的項(xiàng)數(shù)是多少?試說明理由;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com