分析 (1)由函數(shù)的解析式可得sin(x+$\frac{π}{2}$)≠0,可得 x+$\frac{π}{2}$≠kπ,k∈z,由此求得x的范圍,可得函數(shù)的定義域.
(2)由條件利用同角三角函數(shù)的基本關(guān)系、二倍角公式求得sin2α和cos2α的值,再利用兩角差的余弦公式求得f(α)的值.
解答 解:(1)對于函數(shù)f(x)=$\frac{{1+\sqrt{2}cos(2x-\frac{π}{4})}}{{sin(x+\frac{π}{2})}}$,顯然,sin(x+$\frac{π}{2}$)≠0,∴x+$\frac{π}{2}$≠kπ,k∈z,
求得x≠kπ-$\frac{π}{2}$,k∈z,故函數(shù)的定義域為[x|x≠kπ-$\frac{π}{2}$,k∈z }.
(2)∵角α是第四象限角,且cosα=$\frac{3}{5}$,∴sinα=-$\frac{4}{5}$,∴sin2α=2sinαcosα=-$\frac{24}{25}$,cos2α=2cos2α-1=-$\frac{7}{25}$,
則 f(α)=$\frac{1+\sqrt{2}cos(2α-\frac{π}{4})}{sin(α+\frac{π}{2})}$=$\frac{1+\sqrt{2}(\frac{\sqrt{2}}{2}cos2α+\frac{\sqrt{2}}{2}sin2α)}{cosα}$=$\frac{1+cos2α+sin2α}{cosα}$=$\frac{1-\frac{7}{25}-\frac{24}{25}}{\frac{3}{5}}$=-$\frac{2}{5}$.
點評 本題主要考查利用誘導(dǎo)公式進行化簡求值,同角三角函數(shù)的基本關(guān)系、兩角差的余弦公式,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第9項 | B. | 第8項 | C. | 第9項和第10項 | D. | 第8項和第9項 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | $\sqrt{3}$ | C. | 1 | D. | -$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com