A. | 0 | B. | $\frac{10}{3}$ | C. | 12 | D. | 20 |
分析 作出不等式組對應(yīng)的平面區(qū)域,利用z的幾何意義利用數(shù)形結(jié)合即可得到結(jié)論.
解答 解:由約束條件作出其所確定的平面區(qū)域(陰影部分)
平移直線z=4x+3y,由圖象可知當(dāng)直線z=4x+3y經(jīng)過點(diǎn)C時,
目標(biāo)函數(shù)z=4x+3y取得最大值,
由$\left\{\begin{array}{l}{2x+y-2=0}\\{x-y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{4}{3}}\\{y=-\frac{2}{3}}\end{array}\right.$,
即C($\frac{4}{3}$,-$\frac{2}{3}$),
即z=4×$\frac{4}{3}$-$\frac{2}{3}$×3=$\frac{10}{3}$,
故z的最大值為$\frac{10}{3}$.
故選:B.
點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.要求熟練掌握常見目標(biāo)函數(shù)的幾何意義.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{5}}{2}$ | B. | $\frac{\sqrt{6}}{2}$ | C. | $\sqrt{3}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|1<x<3,x∈R} | B. | {x|1≤x≤3,x∈R} | C. | {x|1≤x<3,x∈R} | D. | {x|0<x<3,x∈R} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | ±i | C. | ±1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com