17.設(shè)F是拋物線C:y2=12x的焦點(diǎn),A、B、C為拋物線上不同的三點(diǎn),若$\overrightarrow{FA}+\overrightarrow{FB}+\overrightarrow{FC}=\overrightarrow 0$,則|FA|+|FB|+|FC|=(  )
A.3B.9C.12D.18

分析 設(shè)A(x1,y1),B(x2,y2),C(x3,y3),由已知條件推導(dǎo)出x1+x2+x3=9,根據(jù)$\overrightarrow{FA}+\overrightarrow{FB}+\overrightarrow{FC}=\overrightarrow 0$,
得出點(diǎn)F(3,0)是△ABC重心,運(yùn)用重心的坐標(biāo)公式得出:x1+x2+x3=9,再根據(jù)拋物線的定義得出|FA|+|FB|+|FC|=x1+3+x2+3+x3+3,整體求解即可.

解答 解:設(shè)A(x1,y1),B(x2,y2),C(x3,y3
拋物線y2=12x焦點(diǎn)坐標(biāo)F(3,0),準(zhǔn)線方程:x=-3,
∵$\overrightarrow{FA}+\overrightarrow{FB}+\overrightarrow{FC}=\overrightarrow 0$,
∴點(diǎn)F(3,0)是△ABC重心,
∴x1+x2+x3=9,y1+y2+y3=0,
而|$\overrightarrow{FA}$|=x1-(-3)=x1+3,
|$\overrightarrow{FB}$|=x2-(-3)=x2+3,
|$\overrightarrow{FC}$|=x3-(-3)=x3+3,
∴|FA|+|FB|+|FC|=x1+3+x2+3+x3+3
=(x1+x2+x3)+9=9+9=18.
故選:D.

點(diǎn)評 本題考查拋物線的簡單性質(zhì)的應(yīng)用,是中檔題,解題時(shí)要認(rèn)真審題,注意三角形重心性質(zhì)的靈活運(yùn)用

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知數(shù)列{an}中,a1=1,an+1=an+n,若利用如圖所示的程序框圖計(jì)算該數(shù)列的第10項(xiàng)的值S,則判斷框內(nèi)的條件是n≤9或n<10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.定義在(-∞,0)∪(0,+∞)上的函數(shù)f(x),如果對于任意給定的等比數(shù)列{an},{f(an)},仍是等比數(shù)列,則稱f(x)為“等比函數(shù)”.現(xiàn)有定義在(-∞,0)∪(0,+∞)上的如下函數(shù):
①f(x)=3x;
②f(x)=x3; 
③f(x)=$\frac{2}{x}$; 
④f(x)=log2|x|.
則其中是“等比函數(shù)”的f(x)的序號為②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)點(diǎn)M(x,y)在|x|≤1,|y|≤1中均勻分布,試求滿足:x+y≥0的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.直線l與直線x-$\sqrt{3}$y+1=0垂直,則直線l的斜率為( 。
A.$\frac{\sqrt{3}}{3}$B.-$\frac{\sqrt{3}}{3}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.由0,1,2,…,9這十個(gè)數(shù)字組成的無重復(fù)數(shù)字的四位數(shù)中,個(gè)位數(shù)字與百位數(shù)字之差的絕對值等于2,則這樣的四位數(shù)共有798.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)y=|x-1|的圖象(  )
A.關(guān)于直線x=1對稱B.關(guān)于y軸對稱
C.關(guān)于直線x=-1對稱D.不是軸對稱圖形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列命題中正確的是( 。
A.命題“?x∈R,x2-x≤0”的否定是“?x∈R,x2-x≥0”
B.命題“p∧q為真”是命題“p∨q為真”的必要不充分條件
C.若“am2≤bm2,則a≤b”的否命題為真
D.若實(shí)數(shù)x,y∈[-1,1],則點(diǎn)(x,y)所構(gòu)成的平面區(qū)域?yàn)棣?/td>

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知平面向量$\overrightarrow{a}$,$\overrightarrow$的夾角為45°,且$\overrightarrow{a}$=(2,-2),|$\overrightarrow$|=1,則|$\overrightarrow{a}$-$\overrightarrow$|=( 。
A.$\sqrt{2}$B.2C.$\sqrt{5}$D.3

查看答案和解析>>

同步練習(xí)冊答案