2.已知集合A{x||2x-3|≤7},B={x|x<a},若A∪B=B,則實(shí)數(shù)a的取值范圍為(5,+∞).

分析 化簡(jiǎn)A,由已知得A⊆B,由此能求出實(shí)數(shù)a的取值范圍.

解答 解:由|2x-3|≤7,可得-7≤2x-3≤7,∴-2≤x≤5
∵A∪B=B,
∴A⊆B,
∵B={x|x<a},∴a>5.
∴實(shí)數(shù)a的取值范圍(5,+∞).
故答案為:(5,+∞).

點(diǎn)評(píng) 本題考查實(shí)數(shù)的取值范圍的求法,是基礎(chǔ)題,解題時(shí)要注意并集的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)和g(x)均為奇函數(shù),h(x)=f(x)+g(x)-2在區(qū)間(0,+∞)上有最大值是6,那么h(x)在(-∞,0)上的最小值是( 。
A.-7B.-8C.-9D.-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,角A,B,C的對(duì)應(yīng)邊分別是a,b,c,A>B,cosC=$\frac{5}{13}$,cos(A-B)=$\frac{3}{5}$.
(1)求cos2A的值;
(2)若c=15,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{2x-y≥0}\\{x+y-3≥0}\\{x≤2}\end{array}\right.$,則z=-x+2y的最小值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知f(x2-1)的定義域?yàn)閇-$\sqrt{3}$,$\sqrt{3}$],求f(x-1)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在△ABC中,|$\overrightarrow{AB}$|=2,|$\overrightarrow{AC}$|=1,∠BAC=$\frac{π}{3}$,O為△ABC的內(nèi)心,則$\overrightarrow{OA}$$•\overrightarrow{AB}$的值為$\sqrt{3}-3$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=lnx-x+1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)求證:當(dāng)x>0時(shí),1-$\frac{1}{x}$≤lnx≤x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=lnx-(1+a)x-1,g(x)=-$\frac{lnx}{x}$-a(x+1),其中a是常數(shù).
(1)若函數(shù)f(x)在其定義域上不是單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;
(2)如果函數(shù)p(x),q(x)在公共定義域D上滿足p(x)<q(x),那么就稱q(x)為p(x)在D上的“線上函數(shù)”.證明:當(dāng)a<1時(shí),g(x)為f(x)在(0,+∞)上的“線上函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=ex-$\frac{a}{2}$x2e|x|
(1)若f(x)在[0,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)關(guān)于x的方程ax+1+xlnx=f(x)+$\frac{a}{2}$x2ex是否存在實(shí)根?若存在,請(qǐng)指出有幾個(gè)實(shí)根,若不存在,請(qǐng)說明理由;
(3)求證:當(dāng)a≥1時(shí)f(x)≤x+1.

查看答案和解析>>

同步練習(xí)冊(cè)答案