6.“序數(shù)”指每個(gè)數(shù)字比其左邊的數(shù)字大的自然數(shù)(如1246),在兩位的“序數(shù)”中任取一個(gè)數(shù)比36大的概率是( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{4}{5}$

分析 列舉可得總的“序數(shù)”個(gè)數(shù),找出比36大的,由概率公式可得.

解答 解:十位是1的兩位的“序數(shù)”:8個(gè);十位是2的:7個(gè),
依此類推:十位分別是3,4,5,6,7,8的各有6,5,4,3,2,1個(gè),
故兩位的“序數(shù)”共有8+7+6+5+4+3+2+1=36個(gè).
比36大的有:十位是3的:3個(gè);十位是4的:5個(gè),
依此類推:十位分別是5,6,7,8的各有4,3,2,1個(gè)
∴比36大的兩位的“序數(shù)”有3+5+4+3+2+1=18.
∴所求概率P=$\frac{18}{36}$=$\frac{1}{2}$
故選:A.

點(diǎn)評(píng) 本題考查古典概型及其概率公式,列舉是解決問(wèn)題的關(guān)鍵,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在△ABC中,sinA:sinC=3:4,∠B=120°,S△ABC=12$\sqrt{3}$,求a,b,c三邊的邊長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在三棱柱ABC-A1B1C1中,側(cè)棱BB1⊥底面A1B1C1,D為AC 的中點(diǎn),A1B1=BB1=2,A1C1=BC1,∠A1C1B=60°.
(Ⅰ)求證:AB1∥平面BDC1;
(Ⅱ)求多面體A1B1C1DBA的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)λ∈R,f(x)=$\overrightarrow a•\overrightarrow b$,其中$\overrightarrow a=({cosx,sinx}),\overrightarrow b=({λsinx-cosx,cos(\frac{π}{2}-x)})$,
已知f(x)滿足$f({-\frac{π}{3}})=f(0)$
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)求不等式f′(x)>2$\sqrt{3}$的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=|x-3a|,當(dāng)a=1時(shí)解不等式f(x)>5-|2x-1|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)f(x)=mlnx+nx(m、,n∈R),曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為x-2y-2=0.(1)m+n=$\frac{1}{2}$;(2)若x>1時(shí),f(x)+$\frac{k}{x}$<0恒成立,則實(shí)數(shù)k的取值范圍是$(-∞,\frac{1}{2}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)f(x)=-1+5(x-1)-C${\;}_{5}^{2}$(x-1)2+C${\;}_{5}^{3}$(x-1)3-5(x-1)4+(x-1)5,若f(a)=32,則實(shí)數(shù)a的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)函數(shù)fn(x)=xn+ax+b(n∈N*,a,b∈R).
(1)設(shè)n≥2,a=1,b=-1,證明:fn(x)在區(qū)間($\frac{1}{2}$,1)內(nèi)存在唯一的零點(diǎn).
(2)設(shè)n=2,若對(duì)任意x1,x2∈[-1,1],有|f(x1)-f(x2)|≤4,求a的取值范圍.
(3)在(1)條件下,設(shè)fn(x)在($\frac{1}{2}$,1)內(nèi)零點(diǎn),試說(shuō)明數(shù)列x2,x3,…,xn的增減性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.將函數(shù)y=sinx-$\sqrt{3}$cosx的圖象沿x軸向右平移a個(gè)單位(a>0),所得圖象關(guān)于y軸對(duì)稱,則a的最小值為( 。
A.$\frac{π}{6}$B.$\frac{π}{2}$C.$\frac{7π}{6}$D.$\frac{π}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案