4.如圖,一艘船下午13:30在A處測得燈塔S在它的北偏東30°處,之后它繼續(xù)沿正北方向勻速航行,14:00到達(dá)B處,此時(shí)又測得燈塔S在它的北偏東75°處,且與它相距9$\sqrt{2}$海里,則此船的航速為36海里/小時(shí).

分析 求出∠S,利用正弦定理得出AB,從而得出船的航行速度.

解答 解:由題意得BS=9$\sqrt{2}$,∠A=30°,∠ABS=105°,∴∠S=45°.
在△ABS中,由正弦定理得$\frac{AB}{sin45°}=\frac{BS}{sin30°}$,
∴AB=$\frac{9\sqrt{2}×\frac{\sqrt{2}}{2}}{\frac{1}{2}}$=18.
∴船的速度為V=$\frac{18}{0.5}$=36海里/小時(shí).
故答案為:36.

點(diǎn)評 本題考查了正弦定理的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.關(guān)于m的不等式組$\left\{\begin{array}{l}{\frac{2(m-1)}{3}-\frac{5m+1}{2}≥-3}\\{3m-2(m-1)≥a}\end{array}\right.$ 的非正整數(shù)解是-3,-2,-1,0,則a的最大值為(  )
A.-3B.0C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)z是復(fù)數(shù),下列命題中的假命題是( 。
A.若z2≥0,則z是實(shí)數(shù)B.若z是虛數(shù),則z•$\overline{z}$≥0
C.若z是虛數(shù),則z2≥0D.若z是純虛數(shù),則z2<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在△ABC中,點(diǎn)D和E分別在邊BC和AC上,且BC=3BD,CA=3CE,AD與BE交于點(diǎn)P,若$\overrightarrow{AP}$=m$\overrightarrow{AD}$,$\overrightarrow{BP}$=n$\overrightarrow{BE}$(m,n∈R),則m+n=$\frac{9}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.定義在實(shí)數(shù)集R上的函數(shù)f(x)滿足:f(2)=1,且對于任意的x∈R,都有f′(x)<$\frac{1}{3}$,則不等式f(log2x)>$\frac{lo{g}_{2}x+1}{3}$的解集為(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)i是虛數(shù)單位,則復(fù)數(shù)$\frac{2i}{1+i}$在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知點(diǎn)P(x,y)在不等式組$\left\{\begin{array}{l}{x+y-2≤0}\\{2x-y-2≤0}\\{2x-1≥0}\end{array}\right.$表示的平面區(qū)域上運(yùn)動(dòng),則z=$\frac{x+y+2}{x+1}$的取值范圍是( 。
A.[1,$\frac{5}{3}$]B.[0,1]C.[1,$\frac{8}{3}$]D.[0,$\frac{5}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.曲線f(x)=cos(2x-$\frac{π}{6}$)+ax在x=0處的切線與直線2x-y=0平行,則函數(shù)f(x)的一個(gè)極值點(diǎn)可以是( 。
A.-$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年內(nèi)蒙古高二文上月考一數(shù)學(xué)試卷(解析版) 題型:填空題

若不等式成立的充分條件是,則實(shí)數(shù)的取值范圍是__________.

查看答案和解析>>

同步練習(xí)冊答案