已知函數(shù)f(x)=loga(x-a)+1,(a>0且a≠1)恒過定點(diǎn)(3,1).
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)設(shè)函數(shù)h(x)=ax+1,函數(shù)F(x)=[h(x)+2]2的圖象恒在函數(shù)G(x)=h(2x)+m+2的上方,求實(shí)數(shù)m的取值范圍.
考點(diǎn):函數(shù)恒成立問題
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(Ⅰ)根據(jù)函數(shù)過定點(diǎn),代入解對(duì)數(shù)方程即可得到結(jié)論.
(Ⅱ)根據(jù)函數(shù)F(x)的圖象恒在函數(shù)G(x)的上方,轉(zhuǎn)化為不等式F(x)>G(x)恒成立,即可得到結(jié)論.
解答: 解:(Ⅰ)∵f(x)=loga(x-a)+1,(a>0且a≠1)恒過定點(diǎn)(3,1).
∴f(3)=loga(3-a)+1=1,即loga(3-a)=0,
解得3-a=1,解得a=2;
(Ⅱ)∵函數(shù)F(x)=[h(x)+2]2的圖象恒在函數(shù)G(x)=h(2x)+m+2的上方
∴F(x)>G(x)恒成立,
即[h(x)+2]2>h(2x)+m+2,
即(2x+3)2>22x+1+m+2,
整理得m<(2x2+2•2x+6,
設(shè)H(x)=(2x2+2•2x+6,令t=2x,則t>0,
則H(t)=t2+2t+6=(t+1)2+5,
∵t>0,∴H(t)>H(0)=6
∴m≤6.
點(diǎn)評(píng):本題主要考查與對(duì)數(shù)函數(shù)有關(guān)的性質(zhì)以及不等式恒成立問題,綜合考查學(xué)生的運(yùn)算能力,利用換元法是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ex+sinx,g(x)=ax,且F(x)=f(x)-g(x).
(1)若F(x)≥1在[0,+∞)上恒成立,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=
1
3
時(shí),存在x1、x2∈[0,+∞),使f(x1)=g(x2)成立,求x2-x1的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)為F,右頂點(diǎn)、上頂點(diǎn)分別為點(diǎn)A、B,且|AB|=
5
2
|BF|.
(Ⅰ)求橢圓C的離心率;
(Ⅱ)若斜率為2的直線l過點(diǎn)(0,2),且l交橢圓C于P、Q兩點(diǎn),OP⊥OQ.求直線l的方程及橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l過點(diǎn)A(-1,1),且在y上的截矩是在x軸上的截距的2倍,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中,a3=3,a5+a9=14.
(1)求數(shù)列{an}的通項(xiàng)公式; 
(2)設(shè)bn=2an+an,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+2ax+3,x∈[-4,6],
(Ⅰ)當(dāng)a=-2時(shí),求f(x)的值域;
(Ⅱ)求實(shí)數(shù)a的取值范圍,使函數(shù)y=f(x)在區(qū)間[-4,6]上是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-x2+2x+3在區(qū)間(-∞,m]上是增函數(shù),求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,以O(shè)x軸為始邊作兩個(gè)銳角α,β,它們的終邊
分別交單位圓于A,B兩點(diǎn).已知A,B兩點(diǎn)的橫坐標(biāo)分別是
5
5
10
10

(1)求tanα和tanβ的值;
(2)求α+β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

隨機(jī)寫出兩個(gè)小于1的正數(shù)x與y,它們與數(shù)1一起形成一個(gè)三元數(shù)組(x,y,1).這樣的三元數(shù)組正好是一個(gè)鈍角三角形的三邊的概率是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案