19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{f(x-3),x>0}\\{{e}^{x}+lo{g}_{2}[{8}^{x+1}×(\frac{1}{4})^{-2}],x≤0}\end{array}\right.$,則f(2016)=8.

分析 求出函數(shù)的周期,利用分段函數(shù)的解析式求解函數(shù)值即可.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{f(x-3),x>0}\\{{e}^{x}+lo{g}_{2}[{8}^{x+1}×(\frac{1}{4})^{-2}],x≤0}\end{array}\right.$,
可知x>0時(shí),函數(shù)的周期為3,
則f(2016)=f(0)=e0+log2[81×$({\frac{1}{4})}^{-2}$]=1+7=8.
故答案為:8.

點(diǎn)評 本題考查抽象函數(shù)的應(yīng)用以及分段函數(shù)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)f(x)=ln(x+$\sqrt{a+{x}^{2}}$)為奇函數(shù),則a=( 。
A.-1B.0C.1D.-1或1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若雙曲線的頂點(diǎn)和焦點(diǎn)分別為橢圓$\frac{{x}^{2}}{2}$+y2=1的焦點(diǎn)和頂點(diǎn),則該雙曲線方程為( 。
A.x2-y2=1B.$\frac{{x}^{2}}{2}$-y2=1C.x2-$\frac{{y}^{2}}{2}$=1D.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{2}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若集合A={x||x-3|<2},集合B={x|$\frac{x-4}{x}≥0$},則A∩B=[4,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若f(x)=xex-a有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.($\frac{1}{e}$,+∞)B.(0,$\frac{1}{e}$)C.(-$\frac{1}{e}$,+∞)D.(-$\frac{1}{e}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.⑧如圖,已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為$\frac{\sqrt{3}}{2}$,且經(jīng)過點(diǎn)M(4,1),直線l:y=x+m交橢圓與A,B兩不同的點(diǎn).
(1)求橢圓的方程;
(2)若直線l不經(jīng)過點(diǎn)M,試問直線MA,MB與x軸能否圍成一個(gè)等腰三角形?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知向量$\overrightarrow m=({2sinx,1}),\overrightarrow n=({sinx+\sqrt{3}cosx,-3}),x∈R$,函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$+2.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)設(shè)銳角△ABC內(nèi)角A,B,C所對的邊分別為a,b,c,若f(A)=2,$a=\sqrt{7},b=3$,求角A和邊c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.${({1+x+\frac{1}{x}})^6}$的展開式中常數(shù)項(xiàng)為141.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=tan(ωx-$\frac{π}{5}$)(ω>0)的最小正周期為2π.
(Ⅰ)求函數(shù)f(x)的定義域;
(Ⅱ)求不等式f(x)>-1的解集.

查看答案和解析>>

同步練習(xí)冊答案