【題目】已知函數(shù),.
(1)若函數(shù)有且只有一個(gè)極值點(diǎn),求實(shí)數(shù)的取值范圍;
(2)對于函數(shù),,,若對于區(qū)間上的任意一個(gè),都有,則稱函數(shù)是函數(shù),在區(qū)間上的一個(gè)“分界函數(shù)”.已知,,問是否存在實(shí)數(shù),使得函數(shù)是函數(shù),在區(qū)間上的一個(gè)“分界函數(shù)”?若存在,求實(shí)數(shù)的取值范圍;若不存在,說明理由.
【答案】(1);(2).
【解析】試題分析:(Ⅰ)先求函數(shù)導(dǎo)數(shù):,再根據(jù)函數(shù)有且只有一個(gè)極值點(diǎn),得在區(qū)間上有且只有一個(gè)零點(diǎn),最后結(jié)合二次函數(shù)實(shí)根分布得,解得實(shí)數(shù)的取值范圍是;(Ⅱ)由題意得當(dāng)時(shí),恒成立,
且恒成立,即問題為恒成立問題,解決方法為轉(zhuǎn)化為對應(yīng)函數(shù)最值問題:記,利用導(dǎo)數(shù)研究其單調(diào)變化規(guī)律,確定其最大值:當(dāng)時(shí),單調(diào)遞減,最大值為,由,解得;當(dāng)時(shí),最大值為正無窮大,即在區(qū)間上不恒成立,同理記,利用導(dǎo)數(shù)研究其單調(diào)變化規(guī)律,確定其最小值:由于,所以在區(qū)間上單調(diào)遞增,其最小值為,得.
試題解析:(1),
記,
依題意,在區(qū)間上有且只有一個(gè)零點(diǎn),
∴,得實(shí)數(shù)的取值范圍是;………………………………5分
(Ⅱ)若函數(shù)是函數(shù),在區(qū)間上的一個(gè)“分界函數(shù)”,
則當(dāng)時(shí),恒成立,
且恒成立,…………………………………………6分
記,
則,
若,即:
當(dāng)時(shí),,單調(diào)遞減,且,
∴,解得;…………………………………………8分
若,即:
的圖象是開口向上的拋物線,
存在,使得,
從而,在區(qū)間上不會(huì)恒成立,…………………10分
記,
則,
∴在區(qū)間上單調(diào)遞增,
由恒成立,得,得.
綜上,當(dāng)時(shí),函數(shù)是函數(shù),在區(qū)間上的一個(gè)“分界函數(shù)”. 13分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知長方形中,,,M為DC的中點(diǎn).將沿折起,使得平面⊥平面.
(1)求證:;
(2)若點(diǎn)是線段上的一動(dòng)點(diǎn),問點(diǎn)在何位置時(shí),二面角的余弦值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對某高三學(xué)生在連續(xù)9次數(shù)學(xué)測試中的成績(單位:分)進(jìn)行統(tǒng)計(jì)得到如下折線圖。下面關(guān)于這位同學(xué)的數(shù)學(xué)成績的分析中,正確的共有( )個(gè)。
①該同學(xué)的數(shù)學(xué)成績總的趨勢是在逐步提高;
②該同學(xué)在這連續(xù)九次測試中的最高分與最低分的差超過40分;
③該同學(xué)的數(shù)學(xué)成績與考試次號具有比較明顯的線性相關(guān)性,且為正相關(guān)
A.0 B.1
C.2 D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)是否存在及過原點(diǎn)的直線,使得直線與曲線,均相切?若存在,求的值及直線的方程;若不存在,請說明理由;
(2)若函數(shù)在區(qū)間上是單調(diào)函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間及極值;
(2)令,當(dāng)時(shí),不等式恒成立,
求實(shí)數(shù)的取值范圍;
(3)令,記數(shù)列的前n項(xiàng)積為,求證:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com