分析 設直線l夾在直線l1,l2之間的線段為AB(A在l1上,B在l2上),求出點B的坐標(用A的坐標表示),根據(jù)A在l1上,B在l2上,求得A的坐標,用兩點式求得直線l的方程.
解答 解:設直線l夾在直線l1,l2之間的線段為AB(A在l1上,B在l2上),A,B的坐標分別設為(x1,y1),(x2,y2),因為AB被點P平分,
所以x1+x2=4,y1+y2=0,于是x2=4-x1,y2=-y1
由于A在l1上,B在l2上,所以$\left\{\begin{array}{l}2{x_1}-{y_1}-2=0\\(4-{x_1})-{y_1}+3=0\end{array}\right.$,解得x1=3,y1=4,
即A的坐標是(3,4),所以直線l的方程是$\frac{y-0}{4-0}$=$\frac{x-2}{3-2}$,即 4x-y-8=0.
點評 本題主要考查用待定系數(shù)法求直線方程,直線的兩點式方程的應用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 38 | B. | 39 | C. | 20 | D. | 19 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{1}{5}$ | B. | $\frac{1}{5}$ | C. | -$\frac{4}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com