分析 聯(lián)立$\left\{\begin{array}{l}{y=2x-1}\\{{y}^{2}=2x}\end{array}\right.$,化為:4x2-6x+1=0,利用|AB|=$\sqrt{(1+{2}^{2})[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$即可得出.
解答 解:設直線y=2x-1與拋物線相交于兩點A(x1,y1),B(x2,y2).
聯(lián)立$\left\{\begin{array}{l}{y=2x-1}\\{{y}^{2}=2x}\end{array}\right.$,化為:4x2-6x+1=0,
∴x1+x2=$\frac{3}{2}$,x1x2=$\frac{1}{4}$.
∴|AB|=$\sqrt{(1+{2}^{2})[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{5[(\frac{3}{2})^{2}-4×\frac{1}{4}]}$=$\frac{5}{2}$.
故答案為:$\frac{5}{2}$.
點評 本題考查了直線與拋物線相交弦長問題、一元二次方程的根與系數(shù)的關系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | $\frac{1}{2}$ | C. | 1 | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com